Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Travel time prediction from GPS trace data

Year (A.D.)

2019

Document Type

Thesis

First Advisor

วีระ เหมืองสิน

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิทยาศาสตร์คอมพิวเตอร์

DOI

10.58837/CHULA.THE.2019.1130

Abstract

การพยากรณ์ระยะเวลาเดินทางเป็นส่วนสำคัญของระบบจราจรอัจฉริยะ วิธีการที่เป็นที่นิยมในการพยากรณ์ระยะเวลาเดินทางคือการนำระยะเวลาเดินทางในอดีตมาใช้เพื่อพยากรณ์ระยะเวลาเดินทางในอนาคตอันใกล้ งานวิจัยนี้เป็นการเปรียบเทียบโมเดล LSTM ที่ได้จากข้อมูลประเภท GPS trace กับโมเดลที่สร้างด้วย Neural Network แบบวนซ้ำ ประกอบด้วยโมเดล RNN, LSTM, GRU และการนำโมเดลมาประกอบกันคือ LSTM รวมกับ RNN, LSTM รวมกับ GRU และโมเดล LSTM รวมกับ DNN. โดยทำการศึกษาผลกระทบจากขนาดของ Sliding Window ของข้อมูลที่แตกต่างกัน การนำโมเดลที่สร้างด้วยช่วงถนนช่วงหนึ่งไปใช้พยากรณ์กับถนนช่วงอื่น การนำทิศทางการเดินทางมาเป็นส่วนในการพิจารณา การเปรียบเทียบผลลัพธ์ที่ได้จากวิธีการทำ Link level และ Path level และการพิจารณาในแต่ละช่วงเวลาชั่วโมงของวันโดยผลลัพธ์ที่ได้จากการทดลอง พบว่าโดยรวมโมลเดล LSTM-DNN ให้ผลลัพธ์ที่ดีที่สุด ขณะเดียวกันระยะเวลาที่ใช้สอนและทดสอบโมเดล RNN สามารถทำได้เร็วที่สุด นอกจากนี้ยังคงพบว่าหากเป็นช่วงเวลาเย็นของวันผลการพยากรณ์ที่ได้มีค่าความผิดพลาดสูงกว่าช่วงเวลาอื่นของวันอีกด้วย

Other Abstract (Other language abstract of ETD)

Prediction of travel time is an essential part of Intelligent Transportation Systems (ITS). A popular travel time prediction approach uses the historical travel time series to predict travel time shortly. This research compares short-term travel time prediction models from GPS trace data based on Recurrent Neural Network (RNN) including vanilla RNN, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and some of their combinations including, LSTM-RNN, LSTM-GRU, and LSTM with Deep Neural Network layers (LSTM-DNN). The effects of a different sliding window of data, use the model created by one road segment to predict another road segment, the effect of trip direction, the different result of use data resolution both link-level and path level, and the period of day which make the model inaccuracy prediction. The evaluation results show that LSTM-DNN is the most accurate model, while the vanilla RNN model is the fastest. Furthermore, the model is more inaccurate when predicting the data in the evening period than in another period.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.