Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

การประยุกต์วิธีการวิเคราะห์กลุ่มเพื่อนำมาปรับปรุงการวางแผนการกระจายสินค้าสำหรับร้านค้าปลีก

Year (A.D.)

2019

Document Type

Thesis

First Advisor

Pisit Jarumaneeroj

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

The Regional Centre for Manufacturing Systems Engineering (ศูนย์ระดับภูมิภาคทางวิศวกรรมระบบการผลิต)

Degree Name

Master of Engineering

Degree Level

Master's Degree

Degree Discipline

Engineering Management

DOI

10.58837/CHULA.THE.2019.205

Abstract

This thesis presents an implementation of cluster analysis on retail store clustering so that better cluster-based stock allocation plans could be effectively devised and efficiently executed. For the case study company, stock allocation is one of its key strategic decisions as improper stock allocation, especially during special occurrences with high sale volumes, may lead to loss of sales – and so overstocking at some stores/clusters. Based on our initial investigations, we find that the current clustering technique is somewhat inefficient as it simply divides the stores into four groups with equal members based on store’s sales performance. Besides, the coefficient of variation of allocated stocks in each cluster is comparatively high, around 30.1% – 51.1% To better improve the efficiency of current clustering operation, two more systematic clustering techniques have been therefore introduced and compared with the current technique, namely K-Means and Agglomerative clustering techniques. We find that both K-Means and Agglomerative clustering techniques provide clusters with much less coefficients of variations, about 9.5% and 9.3% respectively. Besides, the total differences between allocated stock target by store cluster and actual stock target by store are also improved from 17,818,056 units to 15,672,717 units and from 17,818,056 units to 15,830,644 units by these two techniques, respectively. When compared among these two new approaches, it can be seen that K-Means clustering technique outperforms Agglomerative clustering technique in terms of both coefficient of variation and total difference between allocated stock target by store cluster and actual stock target by store.

Other Abstract (Other language abstract of ETD)

งานวิจัยนี้มุ่งเน้นการประยุกต์ใช้วิธีการวิเคราะห์กลุ่มในการวางแผนการกระจายสินค้าสำหรับกลุ่มร้านค้าปลีกของบริษัทกระจายสินค้าแห่งหนึ่ง ซึ่งกิจกรรมดังกล่าวถือเป็นหนึ่งในกิจกรรมหลักที่สำคัญของบริษัท โดยเฉพาะอย่างยิ่งในช่วงวันหยุดเทศกาลที่มียอดการขายสูง ทั้งนี้ การจัดกลุ่มร้านค้าเพื่อการกระจายสินค้าที่ไม่เหมาะสมอาจส่งผลให้เกิดการสูญเสียโอกาสในการขาย และอาจส่งผลต่อการจัดเก็บสินค้าที่มีมากเกินความต้องการในบางกลุ่มร้านค้าปลีก จากการศึกษาเบื้องต้น ผู้วิจัยพบว่า วิธีการวิเคราะห์กลุ่มที่บริษัทกรณีศึกษาใช้อยู่ในปัจจุบันยังขาดประสิทธิภาพอยู่มาก โดยวิธีการดังกล่าวเป็นเพียงการแบ่งจำนวนร้านค้าปลีกออกเป็น 4 กลุ่มย่อยๆ ที่มีขนาดเท่าๆ กัน จากค่าประสิทธิภาพทางการขายเพียงเท่านั้น นอกจากนี้ ค่าสัมประสิทธิ์การแปรผันของสินค้าที่กระจายและจัดเก็บในแต่ละกลุ่มยังมีค่าที่ค่อนข้างสูง กล่าวคือ มีค่าระหว่าง 30.1% ถึง 51.1% ผู้วิจัยได้นำเสนอแนวคิดในการวิเคราะห์กลุ่มใหม่สองวิธีแก่บริษัทกรณีศึกษา อันประกอบไปด้วย วิธีการวิเคราะห์กลุ่มแบบ K-Means และ วิธีการวิเคราะห์กลุ่มแบบ Agglomerative เพื่อปรับปรุงประสิทธิภาพของการวิเคราะห์กลุ่มและการกระจายสินค้าของบริษัทให้ดียิ่งขึ้น ผู้วิจัยพบว่า การจัดกลุ่มร้านค้าปลีกด้วยวิธีการวิเคราะห์กลุ่มแบบ K-Means และวิธีการวิเคราะห์กลุ่มแบบ Agglomerative นี้ ให้ผลลัพธ์ที่ดีกว่าวิธีการวิเคราะห์กลุ่มที่บริษัทกรณีศึกษาใช้อยู่ในปัจจุบัน โดยค่าสัมประสิทธิ์การแปรผันของสินค้าที่กระจายและจัดเก็บในแต่ละกลุ่มร้านค้ามีลดลงเหลือ 9.5% ถึง 9.3% ในขณะที่ค่าผลต่างรวมระหว่างค่าการกระจายสินค้าระดับกลุ่มร้านค้าและค่าการกระจายสินค้าระดับร้านค้าก็มีค่าลดลง โดยมีค่าลดลงจาก 17,818,056 ชิ้น เหลือเพียง 15,672,717 ชิ้นสำหรับวิธีการวิเคราะห์กลุ่มแบบ K-Means และลดลงจาก 17,818,056 ชิ้น เหลือเพียง 15,830,644 ชิ้นสำหรับวิธีการวิเคราะห์กลุ่มแบบ Agglomerative ตามลำดับ นอกจากนี้หากทำการเปรียบเทียบผลลัพธ์ระหว่างสองวิธีการวิเคราะห์กลุ่มใหม่ที่นำเสนอ ผู้วิจัยพบว่า วิธีการวิเคราะห์กลุ่มแบบ K-Means ให้ผลลัพธ์ที่ดีกว่า ทั้งในมุมของค่าสัมประสิทธิ์การแปรผัน และค่าผลต่างรวม ระหว่างค่าการกระจายสินค้าระดับกลุ่มร้านค้าและค่าการกระจายสินค้าระดับร้านค้า

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.