Chulalongkorn University Theses and Dissertations (Chula ETD)

การจัดลำดับการผลิตรถยนต์แบบหลายวัตถุประสงค์บนสายการประกอบผลิตภัณฑ์ผสมแบบสองด้าน

Other Title (Parallel Title in Other Language of ETD)

Multi-objective car sequencing problem on mixed-model two-sided assembly lines

Year (A.D.)

2013

Document Type

Thesis

First Advisor

ปารเมศ ชุติมา

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมอุตสาหการ

DOI

10.58837/CHULA.THE.2013.1310

Abstract

การจัดลำดับการผลิตรถยนต์บนสายการประกอบแบบสองด้านมีความสำคัญอย่างยิ่งสำหรับใช้ในการแก้ปัญหาสายการประกอบที่มีหลายผลิตภัณฑ์ให้เกิดประสิทธิภาพสูงสุด ซึ่งปัญหาชนิดนี้มีความยุ่งยากและสลับซับซ้อน เนื่องจากเป็นปัญหาแบบ Non-deterministic Polynomial Hard: NP-Hard โดยปัญหาการจัดลำดับการผลิตรถยนต์แบบผลิตภัณฑ์ผสมบนสายการประกอบแบบสองด้านนี้ ได้พิจารณาฟังก์ชันวัตถุประสงค์ 3 ฟังก์ชันในงานวิจัยคือ ปริมาณงานที่ทำไม่เสร็จน้อยที่สุด จำนวนรถยนต์ที่ละเมิดรวมน้อยที่สุด และจำนวนครั้งการเปลี่ยนแปลงสีน้อยที่สุด และนำเสนออัลกอริทึมการบรรจวบแบบขยาย (Combinatorial Optimization with Coincidence Expand: COIN-E) ซึ่งเป็นอัลกอริทึมที่ประยุกต์มาจาก COIN มาใช้ในการแก้ปัญหา โดยทำการเปรียบเทียบกับอัลกอริทึมที่ยอมรับในการแก้ปัญหาการจัดลำดับการผลิต ได้แก่ NSGA-II, DPSO, BBO และ COIN ผลจากการเปรียบเทียบพบว่า COIN-E มีประสิทธิภาพด้านการลู่เข้าสู่กลุ่มคำตอบ ด้านการกระจายกลุ่มคำตอบและด้านอัตราส่วนของจำนวนกลุ่มคำตอบที่ค้นพบเทียบกับกลุ่มคำตอบที่แท้จริงเท่ากับ 91.28, 51.41 และ 52.13 ตามลำดับ ซึ่งจากตัวชี้วัดสมรรถนะของทั้ง 3 ชนิดจะพบว่า COIN-E มีประสิทธิภาพในการใช้การแก้ปัญหาได้ดีกว่า NSGAII, DPSO, BBO และ COIN

Other Abstract (Other language abstract of ETD)

Car Sequencing on two-sided assembly line is an important problem in an automotive industry. Researchers and practitioners have attempted several approaches to solve this problem aiming at maximum production efficiency. The problem is considered as an “NP-Hard problem". In this paper, three objective functions are considered including (1) minimize utility work, (2) minimize the number of violation and (3) minimize the number of color changes. The expansion of Combinatorial Optimization with Coincidence (COIN-E) algorithm is developed from its original version (i.e. COIN). Several well-known algorithms are compared in solving this problem including Non-dominated Sorting Genetic Algorithms (NSGA-II), Discrete Particle Swarm Optimization (DPSO), Biogeography-based Optimization (BBO) and (COIN). The experimental results indicate that COIN-E is efficient and it obtains the values of convergence = 91.28%, spread = 51.41% and ratio = 52.13%, which are significantly better than NSGA-II, DPSO, BBO and COIN.

Share

COinS