Chulalongkorn University Theses and Dissertations (Chula ETD)

การตรวจหาบริเวณนาข้าวจากภาพถ่ายภาคพื้นดิน

Other Title (Parallel Title in Other Language of ETD)

RICE FIELD DETECTION FROM TERRESTRIAL IMAGES

Year (A.D.)

2013

Document Type

Thesis

First Advisor

สืบสกุล พิภพมงคล

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมคอมพิวเตอร์

DOI

10.58837/CHULA.THE.2013.1241

Abstract

ในงานวิจัยนี้ได้เสนอวิธีการตรวจหาบริเวณนาข้าวที่อยู่ในภาพโดยใช้เทคนิคการประมวลผลภาพดิจิทัลและข่ายงานประสาทเทียม วิธีการที่เสนอใช้กับภาพถ่ายภาคพื้นดินที่ถ่ายในประเทศไทย ในขั้นตอนวิธีของงานวิจัยนี้ในแต่ละภาพจะถูกแบ่งออกเป็นเซกเมนต์เท่าๆกัน จากนั้นในแต่ละเซกเมนต์จะถูกสกัดฟีเจอร์แล้วป้อนเข้าในข่ายงานประสาทเทียม โดยฟีเจอร์ประกอบด้วย ฟีเจอร์เชิงพื้นผิว เชิงสี และเชิงตำแหน่ง ข่ายงานประสาทเทียมจะจำแนกเซกเมนต์ทุกเซกเมนต์ในภาพว่าเซกเมนต์นั้นเป็นส่วนของนาข้าวหรือไม่ จากนั้นฮิวริสติกฟังก์ชันจะถูกนำมาใช้ในการตัดสินว่าเป็นภาพนาข้าวหรือไม่ โดยค่าฮิวริสติกจะชี้ว่าการเชื่อมต่อของแต่ละเซกเมนต์มีมากน้อยเพียงใด ภาพทดสอบ 600 ภาพถูกใช้ในการหาค่าฮิวริสติก เพื่อนำมาหาค่าขีดแบ่งที่เหมาะสม และภาพอีก 9,158 ภาพถูกนำมาทดสอบกับวิธีการที่เสนอ ผลลัพธ์ที่ได้มีค่าความถูกต้องสำหรับภาพนาข้าวเฉลี่ยร้อยละ 96.19 และค่าความถูกต้องสำหรับภาพที่ไม่ใช่นาข้าวเฉลี่ยร้อยละ 96.58

Other Abstract (Other language abstract of ETD)

This research presents a method to detect the rice field region in images by using digital image processing techniques and artificial neural network. The proposed method was applied to terrestrial images taken in Thailand. In the algorithm, each image was divided into segments. The features of each segment were extracted and fed to the artificial neural network. The features include texture, color, and position. Artificial neural network was then used to classify each segment to determine whether a segment was a region of a rice field or not. A heuristic function was then applied to the classified segments of the image to determine a heuristic value that represented how much these segments were connected. 600 images were processed to find the heuristic values. An appropriate threshold was then determined from heuristic value. Other 9,158 images were tested with the proposed method. The result showed an average of 96.19% accuracy for rice detection and an average of 96.58% accuracy for non-rice detection.

Share

COinS