Chulalongkorn University Theses and Dissertations (Chula ETD)
Application of data mining techniques to predict internet usage consumption for personal objectives in the work place
Other Title (Parallel Title in Other Language of ETD)
การประยุกต์เทคนิคเหมืองข้อมูลเพื่อทำนายค่าใช้จ่ายเนื่องจากการใช้อินเทอร์เน็ตเพื่อจุดประสงค์ส่วนบุคคลในสำนักงาน
Year (A.D.)
2008
Document Type
Thesis
First Advisor
Siripun Sanguansintukul
Second Advisor
Chidchanok Lursinsap
Faculty/College
Faculty of Science (คณะวิทยาศาสตร์)
Degree Name
Master of Science
Degree Level
Master's Degree
Degree Discipline
Computer Science
DOI
10.58837/CHULA.THE.2008.1089
Abstract
Internet usage by employees for personal of inappropriate purposes can directly impact the productivity and efficiency of the organization. This translates to lost time, opportunity and money. In this research we use a data mining technique to build an internet usage consumption model by applying two different methods to web server log data: 1) decision trees based upon a C4.5 algorithm and 2) Multilayer perceptrons. The overall results obtained indicate that multilayer perceptrons with the cross validation have higher performance in classifying and predicting employee web browsing habits than decision trees. This data mining technique can therefore be a good candidate for helping organizations make more effective evaluation of their human and computer resources
Other Abstract (Other language abstract of ETD)
การใช้ Internet เพื่อจุดประสงค์ส่วนบุคคลของพนักงานในสำนักงาน ได้ส่งผลกระทบโดยตรงต่อผลผลิตและประสิทธิภาพการทำงานภายในหน่วยงาน ขณะที่พนักงานใช้ Internet เพื่อจุดประสงค์ส่วนตัวนั้น จะก่อให้เกิดการสูญเสียทางด้านเวลาและเงินซึ่งจะลดผลผลิตโดยรวมในหน่วยงาน หากเวลาที่พนักงานสูญเสียเนื่องจากการเข้าใช้ website ที่ไม่เหมาะสมยิ่งมาก ค่าใช้จ่ายก็จะยิ่งมากตามไปด้วย ในงานวิจัยนี้ เราใช้เทคนิคทำเหมืองข้อมูลเพื่อสร้าง classification model ของค่าใช้จ่ายเนื่องจากการใช้ Internet เพื่อจุดประสงค์ส่วนบุคคลของพนักงานในองค์กรจาก web log โดยการใช้ 1. อัลกอริทึมต้นไม้ตัดสินใจ C4.5 และ 2. Multilayer perceptron ผลการทดลองที่ได้ทั้งหมดบ่งชี้ได้ว่า multilayer perceptrons โดยการใช้ cross validation มีประสิทธิภาพในการจำแนกและทำนายพฤติกรรมของการเข้าใช้ website ได้ดีกว่าอัลกอริทึมต้นไม้ตัดสินใจ C4.5 เทคนิคการทำเหมืองข้อมูล ในงานวิจัยนี้สามารถช่วยให้องค์กรประเมิณประสิทธิภาพของพนักงาน และแหล่งข้อมูลทางคอมพิวเตอร์ได้เป็นอย่างดี
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Boonyamanop, Boonyavee, "Application of data mining techniques to predict internet usage consumption for personal objectives in the work place" (2008). Chulalongkorn University Theses and Dissertations (Chula ETD). 58529.
https://digital.car.chula.ac.th/chulaetd/58529