Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
การผสานการวิเคราะห์เชิงเทคนิคและแบบจำลองการเรียนรู้เชิงลึกสำหรับการซื้อขายหุ้น
Year (A.D.)
2022
Document Type
Thesis
First Advisor
Pittipol Kantavat
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)
Degree Name
Master of Science
Degree Level
Master's Degree
Degree Discipline
Computer Science
DOI
10.58837/CHULA.THE.2022.103
Abstract
The issuance of stocks constitutes a means by which ownership in a company is represented, and its distribution may vary depending on whether the company is limited or public. The stock market offers the potential for high returns, thereby serving as an attractive avenue for investment. Against this backdrop, the objective of this study is to develop a predictive model for stock prices that can facilitate profitable trading outcomes. To achieve this aim, the study focuses on intraday and hourly trading and utilizes a hybrid model that integrates Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures, along with technical indicators. BiLSTM is a neural network architecture that possesses the capability to process sequential data in both forward and backward directions, thereby augmenting the model's ability to capture dependencies within the data. The efficacy of the resulting model is subsequently evaluated through a comparison with technical analysis. Empirical validation of the model is carried out using technology stocks that are listed on the NASDAQ index. The experimental findings demonstrate that the hybrid architecture of CNN and BiLSTM can outperform technical analysis in terms of achieving profitable trading outcomes in the stock market.
Other Abstract (Other language abstract of ETD)
การออกหุ้นเป็นวิธีหนึ่งที่ใช้แสดงถึงการเป็นเจ้าของในบริษัท และการกระจายหุ้นอาจแตกต่างกันขึ้นอยู่กับว่าบริษัทเป็นบริษัทจำกัดหรือบริษัทสาธารณะ ตลาดหลักทรัพย์นั้นเสนอโอกาสในการได้รับผลตอบแทนสูง ซึ่งทำให้เป็นทางเลือกที่น่าสนใจสำหรับการลงทุน ก่อนการศึกษานี้จะมีวัตถุประสงค์เพื่อพัฒนาโมเดลทำนายราคาหุ้นที่สามารถช่วยให้มีผลการซื้อขายที่ได้กำไร ในการบรรลุวัตถุประสงค์นี้ การศึกษาเน้นการซื้อขายในระหว่างวันและตลอดชั่วโมง และใช้โมเดลแบบผสานที่รวมเอา Bidirectional Long Short-Term Memory (BiLSTM) และ Convolutional Neural Network (CNN) พร้อมกับตัวชี้วัดทางเทคนิค BiLSTM เป็นโครงสร้างของเครือข่ายประสาทเทียมที่สามารถประมวลผลข้อมูลลำดับได้ทั้งในทิศทางข้างหน้าและข้างหลัง ซึ่งทำให้โมเดลมีความสามารถในการจับความสัมพันธ์ภายในข้อมูลได้ดียิ่งขึ้น จากนั้นทำการประเมินประสิทธิภาพของโมเดลที่ได้ผลลัพธ์ออกมาโดยเปรียบเทียบกับการวิเคราะห์ทางเทคนิค การตรวจสอบทางประสิทธิภาพของโมเดลนี้ใช้หุ้นทางเทคโนโลยีที่ระบุในดัชนี NASDAQ เพื่อแสดงให้เห็นถึงว่าโมเดลผสมระหว่าง CNN และ BiLSTM สามารถทำให้มีผลการซื้อขายที่ได้กำไรในตลาดหลักทรัพย์ได้ดีกว่าการวิเคราะห์ทางเทคนิค
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Pholsri, Phurinut, "Combining technical analysis and deep learning models for stock market trading" (2022). Chulalongkorn University Theses and Dissertations (Chula ETD). 5814.
https://digital.car.chula.ac.th/chulaetd/5814