Chulalongkorn University Theses and Dissertations (Chula ETD)

Semigroups admitting nearring structure

Other Title (Parallel Title in Other Language of ETD)

กึ่งกรุปที่ให้โครงสร้างเนียร์ริง

Year (A.D.)

2006

Document Type

Thesis

First Advisor

Patanee Udomkavanich

Faculty/College

Faculty of Science (คณะวิทยาศาสตร์)

Degree Name

Master of Science

Degree Level

Master's Degree

Degree Discipline

Mathematics

DOI

10.58837/CHULA.THE.2006.1182

Abstract

A system (N, +, .) is called a right [left] nearring if (i) (N, +) is an abelian group, (ii) (N, . ) is a semigroup and (iii) (x+y) . z = x . z + y . z [z . (x +y) = z . x + z . y] for all x, y, z [is an element of a set] N A semigroup S is said to admit a right [left] nearring structure if (1) (S, +, .) is a right [left] nearring for some operation + on S where . is the operation on S or (2) (S[superscript 0], +, .) is a right [left] nearring for some operation + on S[superscript 0] where . is the operation on S[superscript 0] For a nonempty set X, let G(X), T(X), P(X) and I(X) denote respectively the symmetric group on X, the full transformation semigroup on X, the partial transformation semigroup on X and the symmetric inverse semigroup on X. In this research, we characterize when G(X), T(X), P(X) and I(X) admit a right nearring structure and a left nearring structure. We also consider the corresponding idea for certain matrix groups and some particular semigroups.

Other Abstract (Other language abstract of ETD)

เราเรียกระบบ (N, +, .) ว่าเป็น เนียร์ริงขวา [ซ้าย] เมื่อ (i) (N, +) เป็นกรุปอบีเลียน (ii) (N, . ) เป็นกึ่งกรุป (iii) (x+y) . z = x . z + y . z [z . (x +y) = z . x + z . y] สำหรับทุก x, y, z [is an element of a set] N เรากล่าวว่ากึ่งกรุป S ให้ โครงสร้างของเนียร์ริงขวา [ซ้าย] เมื่อ (1) (S, +, .) เป็นเนียร์ริงขวา [ซ้าย] สำหรับบางการดำเนินการ + บน S โดยที่ . เป็นการดำเนินการบน S หรือ (2) (S[superscript 0], +, .) เป็นเนียร์ริงขวา [ซ้าย] สำหรับบางการดำเนินการ + บน S[superscript 0] โดยที่ . เป็นการดำเนินการบน S[superscript 0] สำหรับเซตไม่ว่าง X ให้ G(X), T(X), P(X) และ I(X) แทนกรุปสมมาตรบน X กึ่งกรุปการแปลงเต็มบน X กึ่งกรุปการแปลงบางส่วนบน X และกึ่งกรุปผกผันสมมาตรบน X ตามลำดับ ในงานวิจัยนี้ เราให้ลักษณะว่าเมื่อใด G(X), T(X), P(X) และ I(X) ให้โครงสร้างของเนียร์ริงขวาและโครงสร้างของเนียร์ริงซ้าย เราพิจารณาเรื่องเช่นเดียวกันนี้ สำหรับกรุปเมตริกซ์บางชนิดและกึ่งกรุปที่เจาะจงบางชนิดด้วย

Share

COinS