Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
เทคนิคการเรียนรู้เชิงลึกบนข้อมูลแบบสอบถามอาการและภาพเอกซเรย์ช่องท้องเพื่อวินิจฉัยภาวะกล้ามเนื้อควบคุมการถ่ายอุจจาระทำงานไม่ประสานกัน
Year (A.D.)
2021
Document Type
Thesis
First Advisor
Peerapon Vateekul
Second Advisor
Tanisa Patcharatrakul
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)
Degree Name
Master of Engineering
Degree Level
Master's Degree
Degree Discipline
Computer Engineering
DOI
10.58837/CHULA.THE.2021.99
Abstract
Dyssynergic defecation is one of the most common causes of chronic constipation. It is a behavioral problem in which the pelvic floor muscles are unable to coordinate with the surrounding muscles and nerves to evacuate stool. Patients are required to undergo specialized tests only available at tertiary healthcare centers for diagnosis. The aim of this thesis is to develop deep learning-based models to prescreen potential patients from primary and secondary healthcare centers for further diagnostic tests by using easily obtainable data such as symptom questionnaire and abdominal radiography. First, we developed a model which uses symptom questionnaire as an input from tree-based machine learning algorithms and deep learning model. Feature selection based on expert knowledge and based on traditional method were performed to find the best set of input features. Second, we developed a model which uses abdominal radiography as an input from the state-of-the-art image classification models. Several image augmentation techniques were applied as data preprocessing. Third, we proposed an integrated model which uses both symptom questionnaire and abdominal radiography as inputs. The selected input features from symptom questionnaire were combined with image features extracted from the abdominal radiography using a concatenate layer. This approach was meant to imitate how human experts diagnose in real life. We also proposed data preprocessing and postprocessing suitable for small dataset to improve the model accuracy and efficiency. The results show that our proposed integrated model outperforms the baseline models with an accuracy of 66.01%.
Other Abstract (Other language abstract of ETD)
ภาวะกล้ามเนื้อควบคุมการถ่ายอุจจาระทำงานไม่ประสานกันเป็นหนึ่งในสาเหตุที่มักพบบ่อยของภาวะท้องผูกเรื้อรัง ผู้ป่วยที่มีภาวะนี้ไม่สามารถขับถ่ายได้เนื่องจากมีปัญหาในการควบคุมกล้ามเนื้อบริเวณอุ้งเชิงกรานซึ่งทำงานประสานกันเพื่อทำหน้าที่ในการขับถ่ายอุจจาระ การวินิจฉัยภาวะนี้ผู้ป่วยจำเป็นจะต้องเข้ารับการตรวจในโรงพยาบาลตติยภูมิ ทางผู้จัดทำจึงต้องการพัฒนาโมเดลการเรียนรู้เชิงลึกสำหรับคัดกรองผู้ป่วยเบื้องต้นจากสถานพยาบาลระดับปฐมภูมิและทุติยภูมิเพื่อส่งต่อมาวินิจฉัยในโรงพยาบาลที่มีความพร้อมต่อไป โดยใช้ข้อมูลทางการแพทย์ที่สามารถจัดหาได้ง่ายๆ เช่น แบบสอบถามอาการ และภาพเอกซเรย์ช่องท้อง เป็นต้น การพัฒนาโมเดลการเรียนรู้เชิงลึกถูกแบ่งออกเป็น 3 ส่วนด้วยกัน ส่วนแรก การพัฒนาโมเดลจากอัลกอริทึ่มการเรียนรู้ต้นไม้และโมเดลการเรียนรู้เชิงลึก โดยใช้ข้อมูลจากแบบสอบถามอาการเพียงอย่างเดียว นอกจากนี้ทางผู้จัดทำยังทำการเลือกคุณลักษณะ โดยความรู้ที่ได้มาจากผู้เชี่ยวชาญ และโดยวิธีการดั้งเดิม เพื่อเฟ้นหาชุดข้อมูลที่เหมาะสมที่สุด ส่วนที่สอง การพัฒนาโมเดลจากโมเดลจำแนกรูปภาพที่เป็น state-of-the-art โดยใช้ข้อมูลจากภาพเอกซเรย์ช่องท้องอย่างเดียว และมีการใช้เทคนิคในการเพิ่มข้อมูลรูปภาพในการประมวลผลก่อนด้วย ส่วนที่สาม ทางผู้จัดทำได้นำเสนอโมเดลแบบบูรณาการ ซึ่งใช้ทั้งข้อมูลจากแบบสอบถามอาการและภาพเอกซเรย์ช่องท้อง คุณลักษณะที่ได้รับคัดเลือกจากแบบสอบถามอาการจะถูกนำมาต่อกันกับคุณลักษณะภาพที่สกัดออกมาจากภาพเอกซเรย์ช่องท้องที่ชั้นต่อกัน (concatenate layer) โดยแนวทางดังกล่าวมีต้นแบบมาจากการวินิจฉัยของแพทย์ผู้เชี่ยวชาญในการปฏิบัติงานจริง นอกจากนี้ทางผู้จัดทำยังนำเสนอวิธีการประมวลผลก่อนและประมวลผลหลังที่เหมาะสมกับชุดข้อมูลขนาดเล็กเพื่อเพิ่มประสิทธิภาพและความแม่นยำของตัวโมเดล จากผลการทดลองแสดงให้เห็นว่าโมเดลแบบบูรณาการที่ทางผู้จัดทำเสนอเอาชนะโมเดลฐานด้วยค่าความแม่นยำ 66.01%
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Poovongsaroj, Sornsiri, "Deep learning approach on symptom questionnaire and abdominal radiography for diagnosis of dyssynergic defecation" (2021). Chulalongkorn University Theses and Dissertations (Chula ETD). 4641.
https://digital.car.chula.ac.th/chulaetd/4641