Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Real-time gastric intestinal metaplasia semantic segmentation using deep learning approach

Year (A.D.)

2020

Document Type

Thesis

First Advisor

พีรพล เวทีกูล

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิทยาศาสตร์คอมพิวเตอร์

DOI

10.58837/CHULA.THE.2020.1026

Abstract

ติ่งเนื้อชนิดเซลล์แบ่งตัวแบบผิดปกติในกระเพาะอาหารจัดอยู่ในประเภทรอยโรคชนิดหนึ่ง เนื่องจากรอยโรคชนิดนี้ตรวจพบได้ยาก ทำให้บ่อยครั้งทีมแพทย์มักจะตรวจไม่พบ และมีโอกาสสูงที่จะพัฒนากลายเป็นมะเร็งกระเพาะอาหาร ในปัจจุบัน กระบวนการการเรียนรู้เชิงลึกนั้น ไม่สามารถตรวจจับบริเวณที่เป็นตามเวลาจริงได้ ทำให้งานวิจัยส่วนใหญ่จะตรวจหลังจากทำหัถการ ทางผู้จัดทำ จึงเสนอแนวทางในการทำโมเดลใหม่ โดยเน้นไปที่การใช้งานตามเวลาจริง โดยนำภาพถ่ายรอยโรคความละเอียดสูง 802 ภาพ จากศูนย์ส่องกล้องโรงพยาบาลจุฬาลงกรณ์ มาทำการปรับปรุงโมเดล BiSeNet จากงานแข่งขัน โดยเพิ่มเทคนิคเพื่อช่วยเพิ่มความแม่นยำของโมเดล โดยการใช้การเรียนรู้แบบโอนถ่ายจากภาพการส่องกล้องทางเดินอาหารส่วนล่าง ใช้การปรับภาพแคลชเพื่อช่วยเพิ่มรายละเอียดของภาพ และใช้การเพิ่มข้อมูลเพื่อให้โมเดลมีความแม่นยำโดยที่มีภาพจำนวนน้อย โดยโมเดลที่ถูกปรับปรุงของผู้จัดทำนั้น สามารถรองรับการใช้งานจริงได้ โดยมีการประมวลผลอยู่ที่ 31.53 เฟรมต่อวินาจึงสาที และสามารถทำนายภาพที่มีรอยโรคได้แม่นยำถึงร้อยละ 93 ดั้งนั้น โมเดลของผู้จัดทำ จึงสามารถใช้งานได้ระหว่างการทำหัตถการ และสามารถทำนายรอยโรคได้แม่นยำใกล้เคียงกับโมเดลยอดนิยม ในตลาดปัจจุบัน

Other Abstract (Other language abstract of ETD)

Gastric intestinal metaplasia (GIM) is a premalignant lesion that is difficult to detect and has a high chance to evolve to gastric cancer diseases. Now, deep learning approach failed to detect GIM lesion in real-time due to slow inference speed. Then, most of the paper in GIM is focus on post-surgery. We proposed the new model adapted from real-time competition "BiSeNet" trained by 802 GIM images and its label from Chulalongkorn Hospital. With 3 techniques, transfer learning from lower gastrointestinal tract image, CLAHE pre-processing, and data augmentation, the model can perform real-time environment with 31.53 frames per second and can predict with 93% highest sensitivity. Thus, our BiSeNet model can perform in real-time with high accuracy equivalent to the baseline model in the market.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.