Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Simulation of the percolation threshold of graphene nanocomposites

Year (A.D.)

2017

Document Type

Thesis

First Advisor

วรัญ แต้ไพสิฐพงษ์

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Chemical Engineering (ภาควิชาวิศวกรรมเคมี)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมเคมี

DOI

10.58837/CHULA.THE.2017.1307

Abstract

วัสดุพอลิเมอร์เป็นที่นิยมนำมาใช้งานเนื่องจากสามารถใช้งานได้หลากหลาย แต่หนึ่งในข้อจำกัดของวัสดุพอลิเมอร์คือไม่สามารถนำไฟฟ้าได้ การเติมสารเติมแต่งที่สามารถนำไฟฟ้าได้ลงไปในเนื้อพอลิเมอร์ถึงจุดที่เรียกว่าเพอร์คอเรชันจะทำให้พอลิเมอร์นั้นสามารถนำไฟฟ้าได้ ในงานวิจัยนี้ได้นำเสนอแบบจำลองทางคณิตศาสตร์เพื่อทำนายจุดเพอร์คอเรชัน โดยเปรียบเทียบแบบจำลอง 3 แบบได้แก่ แบบจำลองแกนอ่อน แบบจำลองแกนแข็ง และแบบจำลองแกนแข็งเปลือกอ่อน ผลการคำนวณได้ว่าแบบจำลองแกนแข็งเปลือกอ่อนจะทำนายจุดเพอร์คอเรชันได้ใกล้เคียงกับค่าจากการทดลองมากกว่าแบบจำลองอื่น เพราะแบบจำลองแกนแข็งเปลือกอ่อนมีความคล้ายคลึงกับวัสดุจริงมากที่สุด โดยในส่วนของเปลือกอ่อนเป็นบริเวณเกิดปรากฏการการกระโดดของอิเล็กตรอนซึ่งเกิดในวัสดุจริงระหว่างสารเติมแต่งได้ง่ายขึ้น นอกจากนี้การคำนวณจะแม่นยำมากขึ้นเมื่อเพิ่มขนาดปริมาตรตัวแทนในแบบจำลองและเมื่อเพิ่มจำนวนครั้งของการเฉลี่ยผลลัพธ์

Other Abstract (Other language abstract of ETD)

The polymeric materials are popular in many applications but one limitation of polymers is that they cannot conduct electricity. Adding electrical conducting additive into the polymer matrix at the percolation point makes the polymer to become an electrical conductive material. In this study, the mathematical model to predict this percolation threshold was presented. Three models consisting of Soft-core model, Hard-core model and Hard-core Soft-shell model were compared. Calculation results indicated that the Hard-core Soft-shell model provided the percolation threshold better than other models. This was because the Hard-core Soft-shell model was similar to the real material due to allowed the soft-shell part simulated electron hopping and the tunneling in the actual material which allowed easy connection between additives. Additionally, the simulation result was more accurate when the bigger representative volume was used and more simulated results were averaged.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.