Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
แนวทางการแนะนำอสังหาริมทรัพย์ตามลำดับเชิงลึกเพื่อแก้ปัญหาโคลด์สตาร์ตของสินค้า
Year (A.D.)
2020
Document Type
Thesis
First Advisor
Proadpran Punyabukkana
Second Advisor
Ekapol Chuangsuwanich
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)
Degree Name
Master of Engineering
Degree Level
Master's Degree
Degree Discipline
Computer Engineering
DOI
10.58837/CHULA.THE.2020.131
Abstract
The item cold-start problem occurs when a recommendation system cannot recommend new items owing to record deficiencies and new listing omissions. When searching for real estate, users can register a concurrent interest in recent and prior projects. Thus, an approach to recommend cold-start and warm-start items simultaneously must be determined. Furthermore, unrequired membership and stop-by behavior cause real estate recommendations to have many cold-start and new users. This characteristic encourages the use of a content-based approach and a session-based recommendation system. Herein, we propose a real estate recommendation approach for solving the item cold-start problem with acceptable warm-start item recommendations in the many-cold-start-users scenario. We modify a session-based recommendation system and employ existing mechanisms to efficiently deal with sequential and context information for the next-interacted item's encoded attribute prediction. Subsequently, we use the nearest-neighbors approach using weighted cosine similarity to determine conforming candidates. We use Recall@K and MRR@K with the top-n recommendation to evaluate warm-start and cold-start item recommendations among different applied mechanisms and against the baselines. The results demonstrate the effectiveness of efficiently integrating the information and the difficulty in performing well in warm-start and cold-start item recommendations simultaneously. Our proposed approach illustrates the capability of solving the item cold-start problem while yielding promising results in both recommendations although neither result is the best. We believe that our approach provides a suitable compromise between both recommendations and that it will benefit recommendation tasks focusing on both recommendations.
Other Abstract (Other language abstract of ETD)
ปัญหาโคลด์สตาร์ตมักเกิดขึ้นเมื่อระบบแนะนำไม่สามารถแนะนำรายการใหม่เมื่อขาดข้อมูลหรือเมื่อไม่ได้พิจารณาข้อมูลของรายการใหม่ ๆ สำหรับการค้นหาอสังหาริมทรัพย์นั้น ผู้ใช้สามารถสนใจทั้งที่อยู่อาศัยใหม่และเก่าในเวลาพร้อม ๆ กัน ดังนั้นจึงต้องมีระบบแนะนำที่สามารถแนะนำทั้งรายการเก่าและรายการใหม่ไปด้วยกัน นอกจากนี้การที่ผู้ใช้งานไม่จำเป็นต้องเป็นสมาชิกและพฤติกรรมการใช้งานแบบไม่สม่ำเสมอทำให้การแนะนำอสังหาริมทรัพย์มีผู้ใช้ที่มีข้อมูลการใช้งานน้อยและผู้ใช้ใหม่เป็นจำนวนมาก ลักษณะดังกล่าวจึงสอดคล้องกับการใช้แนวทางการแนะนำที่อิงตามเนื้อหาและระบบแนะนำแบบเซสชัน ในงานวิจัยนี้จึงเสนอแนวทางการแนะนำอสังหาริมทรัพย์สำหรับการแก้ปัญหาโคลด์สตาร์ตของสินค้าที่มีประสิทธิภาพของการแนะนำรายการเก่าที่สามารถยอมรับได้สำหรับสถานการณ์ที่มีผู้ใช้ที่มีข้อมูลการใช้งานน้อยและผู้ใช้ใหม่เป็นจำนวนมาก เราดัดแปลงระบบแนะนำแบบเซสชันและใช้กลไกที่มีอยู่เพื่อจัดการกับข้อมูลลำดับและข้อมูลบริบทอย่างมีประสิทธิภาพสำหรับการคาดการณ์คุณลักษณะที่ถูกเข้ารหัสของอสังหาริมทรัพย์ถัดไปที่ผู้ใช้น่าจะสนใจ จากนั้นจึงหาที่อยู่อาศัยที่สอดคล้องกับคุณลักษณะดังกล่าวโดยใช้วิธีเพื่อนบ้านที่ใกล้ที่สุดร่วมกับความคล้ายคลึงกันของโคไซน์แบบถ่วงน้ำหนัก เราประเมินประสิทธิภาพของการแนะนำรายการเก่าและการแนะนำรายการใหม่ทั้งระหว่างการใช้กลไกที่แตกต่างกันในแนวทางที่นำเสนอและเปรียบเทียบแนวทางที่นำเสนอกับวิธีบรรทัดฐานต่าง ๆ โดยใช้ Recall @ K และ Mean Reciprocal Rank @ K (MRR @ K) คู่กับการวัดผลแบบการแนะนำรายการยอดนิยม ผลลัพธ์ของการประเมินแสดงให้เห็นถึงประสิทธิผลของการนำเข้าข้อมูลลำดับและข้อมูลบริบทอย่างมีประสิทธิภาพและความท้าทายในการแนะนำทั้งรายการเก่าและใหม่ได้ดีในเวลาเดียวกัน แนวทางที่นำเสนอสามารถแนะนำได้เป็นอันดับ 4 และ 2 ในแง่ของการวัดผลด้วย Recall @ 20 เมื่อแนะนำรายการเก่าและรายการใหม่ตามลำดับ ผลลัพธ์นี้แสดงให้เห็นถึงความสามารถในการแก้ปัญหาการโคลด์สตาร์ตของสินค้าแม้ว่าจะไม่ใช่ผลลัพธ์ที่ดีที่สุดทั้งในการแนะนำรายการเก่าและใหม่ก็ตาม ในท้ายที่สุดนี้แนวทางที่นำเสนอเป็นการแนะนำที่เหมาะสมระหว่างการแนะนำรายการเก่าและใหม่และแนวทางนี้จะเป็นประโยชน์ต่องานที่ต้องการแนะนำรายการเก่าและใหม่ในเวลาเดียวกัน
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Polohakul, Jirut, "Deep sequential real estate recommendation approach for solving item cold start problem" (2020). Chulalongkorn University Theses and Dissertations (Chula ETD). 138.
https://digital.car.chula.ac.th/chulaetd/138
Included in
Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Databases and Information Systems Commons