Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Classification of red and white blood cells using transformer-based semantic segmentation and object detection joint method

Year (A.D.)

2023

Document Type

Thesis

First Advisor

สุรีย์ พุ่มรินทร์

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Electrical Engineering (ภาควิชาวิศวกรรมไฟฟ้า)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมไฟฟ้า

DOI

10.58837/CHULA.THE.2023.320

Abstract

การตรวจเซลล์ลิมโฟบลาสติกเฉียบพลันในภาพฟิล์มเลือดเป็นวิธีการวินิจฉัยโรคมะเร็งเม็ดเลือดขาว การใช้การแบ่งภาพเชิงความหมายของเซลล์เม็ดเลือดขาวเฉียบพลันสามารถนำไปใช้ในการพัฒนาระบบการวิเคราะห์โดยใช้คอมพิวเตอร์ช่วย ในขอบเขตของการวิเคราะห์ฟิล์มส่วนปลาย วิธีการเรียนรู้เชิงลึก โดยเฉพาะอย่างยิ่งโครงข่ายประสาทเทียมแบบคอนโวลูชันมักถูกนำมาใช้ ปัจจุบัน โมเดลที่ใช้ทรานฟอร์มเมอร์สำหรับงานแบ่งภาพความหมายส่วนใหญ่ให้ผลลัพธ์ในเชิงความแม่นยำที่สูง ในการศึกษานี้ SegFormer ซึ่งเป็นแบบจำลองที่ใช้ทรานฟอร์มเมอร์สำหรับการแบ่งภาพความหมาย ถูกนำมาใช้เพื่อแบ่งส่วนและจำแนกเซลล์เม็ดเลือดขาวเฉียบพลันโดยใช้กลยุทธ์การฝึกอบรมที่แตกต่างกันสี่แบบ ผลลัพธ์ที่ดีที่สุดเกิดขึ้นได้โดยมีค่าเฉลี่ยของจุดตัด-โอเวอร์-ยูเนี่ยน (IoU) เท่ากับ 0.821 และความแม่นเฉลี่ย 0.917

Other Abstract (Other language abstract of ETD)

The examination of peripheral blood smear images for acute lymphoblastic cells represents a diagnostic approach for leukemia. The utilization of semantic segmentation of acute lymphoblastic cells can be employed in the development of a computer-aided analysis system. In the realm of peripheral blood smear analysis, deep learning methods, particularly convolutional neural networks, are commonly utilized. Currently, transformer-based models have emerged as the state-of-the-art approach for semantic segmentation tasks. In this study, SegFormer, a transformer-based model for semantic segmentation, was utilized to segment and classify acute lymphoblastic cells using four distinct training strategies. The optimal outcome was achieved with a mean intersection-over-union (IoU) of 0.821 and a mean accuracy of 0.917.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.