Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
Classification of red and white blood cells using transformer-based semantic segmentation and object detection joint method
Year (A.D.)
2023
Document Type
Thesis
First Advisor
สุรีย์ พุ่มรินทร์
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Electrical Engineering (ภาควิชาวิศวกรรมไฟฟ้า)
Degree Name
วิศวกรรมศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
วิศวกรรมไฟฟ้า
DOI
10.58837/CHULA.THE.2023.320
Abstract
การตรวจเซลล์ลิมโฟบลาสติกเฉียบพลันในภาพฟิล์มเลือดเป็นวิธีการวินิจฉัยโรคมะเร็งเม็ดเลือดขาว การใช้การแบ่งภาพเชิงความหมายของเซลล์เม็ดเลือดขาวเฉียบพลันสามารถนำไปใช้ในการพัฒนาระบบการวิเคราะห์โดยใช้คอมพิวเตอร์ช่วย ในขอบเขตของการวิเคราะห์ฟิล์มส่วนปลาย วิธีการเรียนรู้เชิงลึก โดยเฉพาะอย่างยิ่งโครงข่ายประสาทเทียมแบบคอนโวลูชันมักถูกนำมาใช้ ปัจจุบัน โมเดลที่ใช้ทรานฟอร์มเมอร์สำหรับงานแบ่งภาพความหมายส่วนใหญ่ให้ผลลัพธ์ในเชิงความแม่นยำที่สูง ในการศึกษานี้ SegFormer ซึ่งเป็นแบบจำลองที่ใช้ทรานฟอร์มเมอร์สำหรับการแบ่งภาพความหมาย ถูกนำมาใช้เพื่อแบ่งส่วนและจำแนกเซลล์เม็ดเลือดขาวเฉียบพลันโดยใช้กลยุทธ์การฝึกอบรมที่แตกต่างกันสี่แบบ ผลลัพธ์ที่ดีที่สุดเกิดขึ้นได้โดยมีค่าเฉลี่ยของจุดตัด-โอเวอร์-ยูเนี่ยน (IoU) เท่ากับ 0.821 และความแม่นเฉลี่ย 0.917
Other Abstract (Other language abstract of ETD)
The examination of peripheral blood smear images for acute lymphoblastic cells represents a diagnostic approach for leukemia. The utilization of semantic segmentation of acute lymphoblastic cells can be employed in the development of a computer-aided analysis system. In the realm of peripheral blood smear analysis, deep learning methods, particularly convolutional neural networks, are commonly utilized. Currently, transformer-based models have emerged as the state-of-the-art approach for semantic segmentation tasks. In this study, SegFormer, a transformer-based model for semantic segmentation, was utilized to segment and classify acute lymphoblastic cells using four distinct training strategies. The optimal outcome was achieved with a mean intersection-over-union (IoU) of 0.821 and a mean accuracy of 0.917.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
เจริญธนานุวัฒน์, ภูมิพัฒน์, "การจำแนกเซลล์เม็ดเลือดแดงและเซลล์เม็ดเลือดขาวด้วยแบบจำลองทรานฟอร์มเมอร์สำหรับวิธีการแบ่งภาพเชิงความหมายร่วมกับการตรวจจับวัตถุ" (2023). Chulalongkorn University Theses and Dissertations (Chula ETD). 10268.
https://digital.car.chula.ac.th/chulaetd/10268