Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

เจเนอเรทีฟแอดเวอเซอเรียลเน็ตเวิร์คสำหรับการสร้างผู้ใช้งานเหมือนจริงโดยใช้การฝังตัวจากระบบแนะนำ

Year (A.D.)

2019

Document Type

Thesis

First Advisor

Ekapol Chuangsuwanich

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name

Master of Science

Degree Level

Master's Degree

Degree Discipline

Computer Science

DOI

10.58837/CHULA.THE.2019.165

Abstract

User data has been used by many companies to understand user behaviors and find new business strategies. However, common techniques could not be used when it comes to new products that have not yet been released due to the fact that there are no prior data available. In this work, we propose a framework for generating realistic user data on new products which can then be analyzed for insights. Our model uses Conditional Generative Adversarial Network (CGAN) with the Straight-Through Gumbel estimator which can also handle discrete-valued outputs. The CGAN is conditioned on product features learned using a recommendation system which can better capture the relationship between products. Experiments using a dataset consisting of view logs from a real estate listing website shows that our model outperforms other baselines on four performance metrics and can effectively predict the finer characteristics of new products.

Other Abstract (Other language abstract of ETD)

ข้อมูลลูกค้าหรือผู้ใช้งานเว็บไซต์นั้นถูกใช้ในธุรกิจเพื่อที่จะเข้าใจถึงพฤติกรรมของผู้ใช้งาน และเพื่อหากลยุทธ์ใหม่ที่เป็นประโยชน์ต่อธุรกิจ อย่างไรก็ตามวิธีการทั่วไปนั้นไม่สามารถใช้ได้เมื่อของสิ่งนั้นเป็นสินค้าใหม่ที่ยังไม่มีการตอบรับจากผู้บริโภค เพราะว่าในความเป็นจริงเรายังไม่มีข้อมูลของสินค้าใหม่เหล่านั้น งานวิจัยนี้จัดทำขึ้นเพื่อเสนอวิธีการสร้างผู้ใช้งานที่เหมือนของจริงโดยขึ้นอยู่กับลักษณะของสินค้าใหม่ที่จะวางขาย แบบจำลองของเราใช้เจเนอเรทีฟแอดเวอเซอเรียลเน็ตเวิร์คแบบมีเงื่อนไข (Conditional Generative Adversarial Network: CGAN) และ Straight-Through Gumbel estimator เพื่อให้แบบจำลองของเราสามารถสร้างข้อมูลค่าไม่ต่อเนื่องได้ แบบจำลองของเราจะรับข้อมูลลักษณะของสินค้าใหม่ที่จะวางขาย ซึ่งลักษณะสินค้านั้นจะถูกแปลงให้เป็นเวกเตอร์สินค้าฝังตัว (Product Embedding vector) โดยการใช้ระบบแนะนำ (Recommendation System) ซึ่งเวกเตอร์นี้จะสามารถเก็บความสัมพันธ์ระหว่างสินค้าได้ดีทั้งในมุมของลักษณะสินค้าและมุมมองความชอบของผู้ใช้งาน การทดลองนี้ใช้ข้อมูลการเข้าใช้งานเว็บไซต์อสังหาริมทรัพย์ของผู้ใช้งาน ผลลัพธ์แสดงให้เห็นว่า แบบจำลองของเรามีประสิทธิภาพสูงกว่าอีก 2 วิธี โดยใช้การวัดประสิทธิภาพจาก 4 ตัววัดและยังสามารถสร้างข้อมูลได้เหมือนของจริงแม้จำนวนข้อมูลในบางลักษณะจะต่างกันมากก็ตาม

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.