Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

การประยุกต์เครื่องเวกเตอร์สนับสนุนด้วยการเชื่อมโยงของโครงสร้างสารประกอบชีวเคมีปฐมฐานเพื่อระบุลักษณะเป้าหมายของโมเลกุล

Year (A.D.)

2019

Document Type

Thesis

First Advisor

Kitiporn Plaimas

Second Advisor

Chidchanok Lursinsap

Faculty/College

Faculty of Science (คณะวิทยาศาสตร์)

Department (if any)

Department of Mathematics and Computer Science (ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์)

Degree Name

Master of Science

Degree Level

Master's Degree

Degree Discipline

Applied Mathematics and Computational Science

DOI

10.58837/CHULA.THE.2019.7

Abstract

Graph-structured data are widely used in many fields of study. For example, in cheminformatics, the data of biochemical compounds can be encoded as a compound graph where atoms are represented by vertices and chemical bonds between pairs of atoms are represented by edges. By this setting, we can predict the molecular characteristics of an unseen biochemical compound by considering the similarity between two compound graphs. This problem is called a graph classification. This study, proposes an algorithm for compound graph classification by finding primitive substructures of the compounds and encode them in a new graph form. Then, their similarities are computed and fed to a support vector machine. The proposed algorithm was evaluated on four real-world data sets with four similarity measures, yielding the average accuracy of 84.7\%. Furthermore, the performance of the algorithm was also better than the classification method that solely uses graph kernels. In conclusion, the extraction of primitive structures can be a great tool for extracting compound structure features in biochemical compound classification.

Other Abstract (Other language abstract of ETD)

ข้อมูลในรูปของกราฟเชิงโครงสร้างมีการใช้อย่างแพร่หลายในหลากหลายสาขาวิชา ในการศึกษาเกี่ยวกับเคมีสารสนเทศศาสตร์ ข้อมูลของสารประกอบทางชีวเคมีสามารถเก็บอยู่ในรูปของกราฟ โดยที่จุดยอดแสดงถึงอะตอม และเส้นเชื่อมระหว่างจุดแสดงถึงพันธะทางเคมีระหว่างอะตอม ด้วยการเก็บข้อมูลในรูปแบบดังกล่าว เราสามารถทำการทำนายลักษณะเป้าหมายของสารประกอบทางชีวเคมีที่เราไม่รู้จักได้ โดยการพิจารณาความคล้ายคลึงกันระหว่างกราฟของสารประกอบแต่ละชนิด ปัญหาดังกล่าวมีชื่อเรียกว่า การจำแนกประเภทข้อมูลประเภทกราฟ ในงานวิจัยนี้ เราได้ทำการเสนอขั้นตอนวิธีในการจำแนกข้อมูลของกราฟสารประกอบชีวเคมี โดยการสกัดโครงสร้างพื้นฐานของสารประกอบ แล้วทำการสร้างกราฟใหม่ขึ้นจากโครงสร้างพื้นฐานเหล่านั้น จากนั้นนำค่าความคล้ายคลึงกันของกราฟใหม่ที่ได้มาทำการจำแนกด้วยเครื่องเวกเตอร์สนับสนุน เราได้ทำการทดสอบขั้นตอนวิธีนี้กับชุดข้อมูลของสารประกอบชีวเคมีมาตรฐานทั้งหมด 4 ชุด กับวิธีการหาค่าความคล้ายคลึงกันระหว่างกราฟ 4 แบบ โดยได้ค่าความแม่นยำเฉลี่ยที่ 84.7% นอกจากนี้ประสิทธิภาพของวิธีที่ได้นำเสนอยังสูงกว่าการจำแนกข้อมูลโดยใช้แค่กราฟเคอร์เนลเพียงอย่างเดียวอีกด้วย โดยสรุปแล้ววิธีการสกัดโครงสร้างพื้นฐานที่ได้เสนอนี้ เป็นเครื่องมือที่มีประโยชน์ในการช่วยสกัดข้อมูลเชิงโครงสร้างเพื่อนำไปใช้ในการจำแนกข้อมูลของสารประกอบชีวเคมีได้

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.