Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Predictability of gold price trends based on tweet sentiments using machine learning techniques

Year (A.D.)

2022

Document Type

Independent Study

First Advisor

นราพงศ์ ศรีวิศาล

Faculty/College

Faculty of Commerce and Accountancy (คณะพาณิชยศาสตร์และการบัญชี)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

เทคโนโลยีสารสนเทศทางธุรกิจ

DOI

10.58837/CHULA.IS.2022.114

Abstract

การศึกษานี้นำเสนอการนำข้อมูลที่เป็นรูปแบบข้อความจากทวิตเตอร์ โดยเก็บรายวันตั้งแต่เดือนมกราคม ปี 2017 ถึง เดือนธันวาคม ปี 2022 ซึ่งข้อความทั้งหมดมาจากการทวีตของผู้เชี่ยวชาญด้านการลงทุนทองคำจำนวน 10 ท่าน ข้อความทั้งหมดหลังกระบวนการประมวลผลภาษาธรรมชาติจะถูกนำเข้าฝึกฝนด้วยโมเดลการเรียนรู้ด้วยเครื่องได้แก่ ต้นไม้ตัดสินใจ นาอีฟ เบย์ การถดถอยโลจิสติก เครื่องเวกเตอร์คำ้ยัน เพื่อวิเคราะห์หาโมเดลที่เหมาะสมที่สุดสำหรับการคาดการณ์ทิศทางราคาทองคำรายวันและรายสัปดาห์ นอกจากนั้นข้อความทั้งหมดสามารถนำมาคำนวณค่าความรู้สึกและนำไปใช้ร่วมกับตัวแปรคาดการณ์ต่าง ๆ เช่น ดัชนีเงินดอลลาร์สหรัฐ ดัชนีความผันผวนทองคำ อัตราดอกเบี้ยระหว่างธนาคารของสหรัฐฯ ดัชนี SPDR® Gold Shares (GLD) ดัชนี SPDR S&P 500 ETF Trust (SPY) และอัตราผลตอบแทนพันธบัตรรัฐบาลสหรัฐอเมริกา 10 ปี เพื่อใช้คาดการณ์ทิศทางราคาทองคำด้วยเทคนิคการเรียนรู้ด้วยเครื่องได้อย่างมีประสิทธิภาพและเป็นประโยชน์ต่อนักลงทุนทองคำ

Other Abstract (Other language abstract of ETD)

This study presents the information obtained from Twitter by scraping since January 2017 to December 2022. The data collection is from the 10 Twitter's users who are expert in gold investment. After textual data are proceeded by natural language processing (NLP), they are trained by machine learning models, including Decision Trees, Naive Bayes, Logistic Regression, Support Vector Machine to analyze the most optimal models for predicting daily and weekly gold price trends. Moreover all textual data are computed and converted into sentiment scores (positive, negative and neutral) and used with predictor variables such as dollar index, gold volatility index, effective federal fund rate, SPDR® Gold Shares (GLD), SPDR S&P 500 ETF Trust (SPY) and United States 10-Year Bond Yield (TNX) for predictability of gold price trends by machine learning techniques effectively and benefiting to gold investors.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.