Chulalongkorn University Theses and Dissertations (Chula ETD)
การพยากรณ์อุปสงค์พลังงานไฟฟ้าของประเทศไทยในระยะยาวด้วยวิธีโครงข่ายประสาทเทียม
Other Title (Parallel Title in Other Language of ETD)
Long-term Thailand electrical energy consumption forecasting with an artificial neural network approach
Year (A.D.)
2012
Document Type
Thesis
First Advisor
ปารเมศ ชุติมา
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Degree Name
วิศวกรรมศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
วิศวกรรมอุตสาหการ
DOI
10.58837/CHULA.THE.2012.1337
Abstract
งานวิจัยนี้ได้ศึกษาวิธีการพยากรณ์อุปสงค์พลังงานไฟฟ้า (Electrical Energy Consumption) ของประเทศไทยในระยะยาวด้วยวิธีโครงข่ายประสาทเทียม (Artificial Neural Network) โดยได้นำโครงข่ายประสาทเทียมแบบแพร่ย้อนกลับ (Back-Propagation Neural Network: BPNN) มาใช้ในการพยากรณ์พลังงานไฟฟ้าของประเทศไทยช่วง พ.ศ. 2555-2573 โดยมีช่วงฝึกสอนตั้งแต่ พ.ศ.2537-2549 และช่วงทดสอบตั้งแต่ พ.ศ.2550-2554 โดยตัวแปรป้อนเข้าในแบบจำลองจะพิจารณาจากตัวแปรด้านเศรษฐศาสตร์ ดินฟ้าอากาศ สังคมศาสตร์ และอุตสาหกรรม โดยพิจารณาตัวแปรที่มีความสัมพันธ์กับค่าพลังงานไฟฟ้าที่ดี (Strong parameter) ไปออกแบบโครงข่ายประสาทเทียม ส่วนตัวแปรที่มีความสัมพันธ์ไม่ดี (Weak parameter) จะถูกคัดออก การศึกษาและออกแบบทำให้ได้โครงข่ายประสาทเทียม 1 ชั้นซ่อน ที่มี 4 นิวรอนเป็นฟังก์ชันเส้นตรงและมีตัวแปรป้อนเข้าแบบจำลอง 4 ตัวแปร คือ ผลผลิตมวลรวมในประเทศ (GDP) จำนวนลูกค้าการไฟฟ้า (Customer) ดรรชนีอุตสาหกรรม (Industrial Index) และจำนวนนักท่องเที่ยวต่างชาติ (Foreign Tourist) ส่วนตัวแปรผลลัพธ์มี 1 ตัวแปรคือ อุปสงค์พลังงานไฟฟ้า ผลการศึกษาสามารถสรุปได้ว่าวิธีโครงข่ายประสาทเทียมแบบแพร่ย้อนกลับสามารถพยากรณ์ได้แม่นยำกว่าวิธีของคณะอนุกรรมการพยากรณ์แห่งประเทศไทย (Thailand Load Forecast Sub-Committee : TLFS) ที่ถูกใช้ในแผนพัฒนาแหล่งผลิตไฟฟ้า ฉบับ พ.ศ. 2553-2573 (ทบทวนครั้งที่ 2) โดยวิธีโครงข่ายประสาทเทียมมีค่าร้อยละความคลาดเคลื่อนเฉลี่ยสัมบูรณ์ (Mean Percentage Absolute Error: MAPE) เท่ากับ 2.5% ส่วนวิธีของคณะอนุกรรมการฯ ฉบับ เม.ย. 2553 มีค่าเท่ากับ 4.54%
Other Abstract (Other language abstract of ETD)
The main purpose of this research is to study and formulate a long-term Thailand electrical energy consumption forecasting model with an artificial neural network approach. Back-Propagation Neural Network (BPNN) is applied to forecast on 2012-2030 time period. Training and testing period are 1994-2006 and 2007-2011 | respectively. Input assumptions consider parameters in field of Economics | Meteorology | Social science and Industrial parameter. Strong parameters be modeled | weak parameter be sorted out. The candidate forecasting model construct by 4 neurons in 1 hidden layer with pure-linear activate function. Finally, Input parameters are GDP (Gross Domestic Product) | Customer, Industrial Index, Foreign tourist. The only one output is electrical energy consumption. The results show that BPNN obtains a better forecast value than TLFS (Thailand Load Forecast Sub-Committee) approach which applied in PDP2010 revision2 (Power Development Plan 2010-2030). The MAPE (Mean Percentage Absolute Error) results show that BPNN is 2.5% and TLFS is 4.54%.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
โกมาสถิตย์, คงฤทธิ์, "การพยากรณ์อุปสงค์พลังงานไฟฟ้าของประเทศไทยในระยะยาวด้วยวิธีโครงข่ายประสาทเทียม" (2012). Chulalongkorn University Theses and Dissertations (Chula ETD). 69203.
https://digital.car.chula.ac.th/chulaetd/69203