Chulalongkorn University Theses and Dissertations (Chula ETD)

Parallel approach to genetic algorithms for evolvable hardware

Other Title (Parallel Title in Other Language of ETD)

ขั้นตอนวิธีพันธุกรรมสำหรับวงจรเชิงวิวัฒนาการแบบขนาน

Year (A.D.)

2008

Document Type

Thesis

First Advisor

Prabhas Chongstitvatana

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Degree Name

Doctor of Philosophy

Degree Level

Doctoral Degree

Degree Discipline

Computer Engineering

DOI

10.58837/CHULA.THE.2008.1571

Abstract

The thesis proposes the cellular compact genetic algorithm (CCGA), which is a parallel probabilistic model-building genetic algorithm for evolvable hardware. CCGA replaces traditional migration of individuals with the probabilistic migration. Each CCGA node uses the traditional compact GA with elitism. CCGA employs adaptive combination of probability vectors from its neighbors. CCGA can solve hard problems of bounded difficulty. With parallel approach, CCGA supports scalability. In addition, CCGA is designed for hardware implementation. The scalable hardware architecture for CCGA is proposed. For each node of CCGA, the scalable hardware architecture supports expandable number of variables to be optimized with flexible precision and expandable chromosome length. Evolvable hardware based-on Cellular Genetic Algorithm (CCGA) and Block-based neural network (BBNN) is presented. The layer-based architecture is proposed for integrating CCGA with BBNN in hardware. A hardware design of BBNN neurons is proposed. The link-multiplexed concept is used for hardware design of BBNN neurons. The proposed evolvable hardware based-on CCGA and BBNN is applied to the problem of online ECG signal classification. This demonstrates that CCGA can solve the real-world problems. The proposed evolvable hardware can be implemented in FPGA or ASIC for a portable personalized ECG signal classifications for long term patient monitoring.

Other Abstract (Other language abstract of ETD)

วิทยานิพนธ์นี้นำเสนอขั้นตอนวิธีพันธุกรรมอย่างย่อแบบเซล ซึ่งเป็นขั้นตอนวิธีพันธุกรรมแบบขนานสำหรับประยุกต์ใช้งานกับวงจรเชิงวิวัฒนาการ ขั้นตอนวิธีพันธุกรรมอย่างย่อแบบเซล ใช้การแลกเปลี่ยนโมเดลความน่าจะเป็นของกลุ่มประชากรแทนการแลกเปลี่ยนประชากรโดยตรง อีกทั้งใช้หลักการเก็บประชากรที่ดีที่สุด ขั้นตอนวิธีพันธุกรรมอย่างย่อแบบเซล ใช้หลักการปรับตัวในการรวมโมเดลความน่าจะเป็นของกลุ่มประชากรเข้าด้วยกัน และสามารถใช้แก้ปัญหาขั้นยากที่มีกรอบจำกัดได้ ขั้นตอนวิธีพันธุกรรมอย่างย่อแบบเซลถูกออกแบบมาเหมาะสมสำหรับสร้างเป็นวงจรเชิงเลข มีการนำเสนอสถาปัตยกรรมฮาร์ดแวร์แบบปรับขยายได้ของขั้นตอนวิธีพันธุกรรมอย่างย่อแบบเซล วิทยานิพนธ์ยังได้นำเสนอวงจรเชิงวิวัฒนาการซึ่งใช้งานร่วมกันระหว่างวิธีพันธุกรรมอย่างย่อแบบเซลและโคร่งข่ายประสาทเทียมโดยใช้หลักการสถาปัตยกรรมฮาร์ดแวร์แบบเป็นชั้น ได้ทำการประยุกต์วงจรเชิงวิวัฒนาการซึ่งใช้งานร่วมกันระหว่างวิธีพันธุกรรมอย่างย่อแบบเซลและโคร่งข่ายประสาทเทียมกับปัญหาการแยกสัญญาณคลื่นไฟฟ้าหัวใจ ซึ่งแสดงให้เป็นว่าวิธีพันธุกรรมอย่างย่อแบบเซลและวงจรเชิงวิวัฒนาการที่นำเสนอ สามารถนำไปแก้ปัญหาจริงได้

Share

COinS