Chulalongkorn University Theses and Dissertations (Chula ETD)
การลดสัญญาณรบกวนเติมแต่งแบบคงที่ก่อนการรู้จำเสียงพูด โดยการลบสเปกตรัมแบบปรับค่าถ่วงน้ำหนักได้
Other Title (Parallel Title in Other Language of ETD)
Additive stationary noise subtraction for speech recognition using adjustable weight spectral subtraction
Year (A.D.)
2006
Document Type
Thesis
First Advisor
อติวงศ์ สุชาโต
Second Advisor
โปรดปราน บุณยพุกกณะ
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Degree Name
วิทยาศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
วิทยาศาสตร์คอมพิวเตอร์
DOI
10.58837/CHULA.THE.2006.1300
Abstract
ในระบบรู้จำเสียงพูดนั้น หากมีสัญญาณรบกวนรวมอยู่ในสัญญาณเสียง จะมีผลทำให้ความแม่นยำและประสิทธิภาพในการรู้จำลดลง ทั้งนี้ได้มีงานวิจัยที่ศึกษาขั้นตอนวิธีต่างๆ อย่างกว้างขวาง โดยมีวัตถุประสงค์เพื่อลดสัญญาณรบกวนให้มากที่สุดก่อนผ่านเข้าสู่กระบวนการรู้จำต่อไป ในวิทยานิพนธ์นี้ได้นำเสนอขั้นตอนวิธีการลบสเปกตรัมแบบปรับค่าถ่วงน้ำหนักได้ โดยใช้การประมาณขนาดสัญญาณรบกวนจากสัญญาณเสียงพูดในช่วง 0-100 มิลลิวินาทีแรก ซึ่งถือว่าเป็นช่วงสัญญาณเงียบเพื่อให้เป็นตัวแปรเสริมในการเลือกค่าถ่วงน้ำหนักที่เหมาะสม งานวิจัยนี้นำเสนอการใช้ฟังก์ชันความสัมพันธ์ระหว่างค่าถ่วงน้ำหนัก และค่าเฉลี่ยพลังงานสัญญาณรบกวนแบบเชิงเส้น ซึ่งสามารถเพิ่มความแม่นยำในการรู้จำเสียงพูดได้ดี ในกรณีค่าอัตราส่วนสัญญาณต่อสัญญาณรบกวนมีค่าต่ำ ผลการทดลองแสดงให้เห็นว่าค่าความแม่นยำในการรู้จำมีค่ามากขึ้น เมื่อใช้กับขั้นตอนวิธีที่นำเสนอนี้ โดยเมื่อเปรียบเทียบขั้นตอนวิธีนำเสนอและขั้นตอนวิธีการลบสเปกตรัมแบบการประมาณแม็กซิมัมไลค์ลิฮูค พบว่า ค่าความแม่นยำโดยรวมเมื่อใช้ขั้นตอนวิธีที่นำเสนอดีขึ้น 17.79% เมื่อใช้ชุดข้อมูลเสียงพูดตัวเลข
Other Abstract (Other language abstract of ETD)
Impact from noisy signal degrades accuracy in speech recognition system. Noise reduction techniques have been developed continuously in order to reduce noise signal from desired speech before it is passed to the recognizer. In this thesis, an adaptive weight spectral subtraction is proposed. The method estimates noise from the first 100 milliseconds of the original speech and threats it as background noise. Then a linear function of weight and the average noise energy is calculated. This method is efficient with speech that SNR is low, Experiments show that the proposed method increases recognition accuracy by 17.79% when compared with maximum likelihood spectral subtraction and tested in single digit spoken speech data.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
ชววิทยากุล, เลอเกียรติ, "การลดสัญญาณรบกวนเติมแต่งแบบคงที่ก่อนการรู้จำเสียงพูด โดยการลบสเปกตรัมแบบปรับค่าถ่วงน้ำหนักได้" (2006). Chulalongkorn University Theses and Dissertations (Chula ETD). 66229.
https://digital.car.chula.ac.th/chulaetd/66229