Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Deep learning techniques for image recognition of counterfeit brand-name handbag materials

Year (A.D.)


Document Type


First Advisor

ญาใจ ลิ่มปิยะกรณ์


Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name


Degree Level


Degree Discipline





การปลอมแปลงสินค้าด้านแฟชั่นเป็นปัญหาที่เกิดขึ้นอย่างต่อเนื่องโดยเฉพาะกับกระเป๋าแบรนด์หรู เนื่องจากมีความยากลำบากต่อการตรวจสอบความแท้จริง โดยเฉพาะอย่างยิ่งกับการตรวจสอบสินค้ามือสองที่เคยผ่านการใช้งานมาแล้ว ซึ่งทำให้เกิดปัญหาการตรวจสอบกระเป๋าของแท้และของปลอมทั้งในผู้ซื้อและผู้ขายโดยเฉพาะในช่วงล็อคดาวน์ระหว่างเหตุการณ์โรคระบาด Covid-19 ที่จำกัดการเดินทาง งานวิจัยนี้เสนอการประยุกต์ใช้เทคนิคการเรียนรู้เชิงลึกโครงข่ายปราสาทคอนโวลูชัน เพื่อจำแนกภาพในระดับพิกเซล ร่วมกับการนำการสกัดคุณลักษณะสำคัญพื้นผิวแบบ LBP มาพัฒนาการเรียนรู้ของแบบจำลอง โดยใช้แบบจำลองวีจีจี 16 และ เดนซ์เน็ต121 โดยใช้ stratified 5-Fold cross validation เพื่อประเมินแบบจำลอง ซึ่งการเปรียบเทียบผลการทดลองของการใช้แบบจำลองพื้นฐาน และการใช้แบบจำลองพื้นฐานร่วมกับการสกัดคุณลักษณะสำคัญแบบ LBP ทั้งนี้แบบจำลอง โครงข่ายปราสาทแบบเดนซ์เน็ต121 ร่วมกับการสกัดคุณลักษณะสำคัญแบบ LBP ให้ค่าความแม่นยำสูงสุดที่ 95% จากการจำแนกภาพกระเป๋าของแท้ ของปลอม และวัสดุอื่น เป็นการจำแนกรูปภาพแบบหลายประเภท และเมื่อนำการสกัดคุณลักษณะแบบ LBP ร่วมกับแบบจำลองทำให้ค่าความแม่นยำการทำนายผลลัพธ์ที่สูงขึ้น

Other Abstract (Other language abstract of ETD)

Counterfeit of fashion goods is an ongoing problem. Especially, luxury handbags are difficult for authenticity detection, and it is even harder for the cases of secondhand used items. Such limitation of detection causes trouble for both traders and customers to prove authenticity. And it is particularly troublesome due to limitation in traveling during the crisis period of Covid-19 pandemic. This research thus studies and presents implementation of deep learning comprising of Convolutional Neural Networks (CNN) to classify images into pixels, together with texture feature extraction by Local Binary Pattern (LBP). The process is to study models by using pretrained VGG16 and DenseNet121 with stratified 5-Fold cross validation for evaluate model, by comparison between base models without LBP and base models with LBP. The models DenseNet121 with LBP resulted with 95% accuracy from classification of handbags for genuineness, counterfeit, and irrelevant materials, which is multiclassification. Moreover, implementation of LBP with the models resulted with more accuracy.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.