Chulalongkorn University Theses and Dissertations (Chula ETD)
แบบจำลองข่ายงานนิวรัลสำหรับการทำนายความเข้มข้นกรดและความเข้มข้นไอออนเหล็กที่ได้รับจากกระบวนการนำกลับกรดไฮโดรคลอริกโดยการแลกเปลี่ยนไอออน
Other Title (Parallel Title in Other Language of ETD)
Neural network model for the prediction of acid concentration and steel ion obtained from hydrochloric acid recovery system by ion exchange
Year (A.D.)
2004
Document Type
Thesis
First Advisor
ไพศาล กิตติศุภกร
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Degree Name
วิศวกรรมศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
วิศวกรรมเคมี
DOI
10.58837/CHULA.THE.2004.1279
Abstract
ในงานวิจัยนี้นำแบบจำลองข่ายงานนิวรัลมาทำนายโพไฟล์ความเข้มข้นของกระบวนการ นำกลับกรดไฮโดรคลอริกที่ประกอบด้วยหอเรซินแบบฟิกเบด 2 หอ โดยการแลกเปลี่ยนไอออน Fe2+ และ Fe3+ จากกรดเสียที่ได้จากอุตสาหกรรมแปรรูปเหล็ก ในขั้นตอนกระบวนการกำจัดสนิม เพื่อเพิ่มความเข้มข้นกรดไฮโดรคลอริกในการนำกลับไปใช้ใหม่ ซึ่งกระบวนการแลกเปลี่ยนไอออน นี้เป็นกระบวนการที่มีความซับซ้อน และมีความไม่เป็นเชิงเส้นสูง การหาแบบจำลองทาง คณิตศาสตร์ค่อนข้างยุ่งยาก ทางเลือกหนึ่งที่น่าสนใจ คือการประยุกต์ใช้ข่ายงานนิวรัลมาใช้เป็น ตัวแทนกระบวนการแลกเปลี่ยนไอออนนี้ และข่ายงานนิวรัลสามารถหาแบบจำลองที่มีความซับซ้อน และไม่เป็นเชิงเส้นได้ดี โดยเฉพาะกรณีที่มีรายละเอียดกระบวนการจำกัด งานวิจัยนี้ใช้ ข้อมูลที่ได้จากการทดลองกระบวนการแลกเปลี่ยนไอออน โดยแบ่งเป็นข้อมูลสำหรับฝึกและทดสอบข่ายงาน เชื่อมโยงโครงสร้างแบบการกระจายย้อนกลับ และอัลกอริธึมการเรียนรู้แบบรีเวนเบอกร์-มาร์ควอร์ ทำการเปลี่ยนโครงสร้างชั้นซ่อนในข่ายงาน และจำนวนนิวรอน โดยนำฟังก์ชั่นค่าความผิดพลาดกำลังสองเฉลี่ยน้อยสุด (MSE minimum technique) เพื่อหาข่ายงานที่ เหมาะสมที่สุด ผลที่ได้จาการจำลองนี้ สำหรับการแลกเปลี่ยนไอออนบวก ข่ายงาน [5-11-13-2] สำหรับความเข้มข้นเหล็กตั้งแต่ 0-3000 ppm และ ข่ายงาน [5-8-9-2] สำหรับความเข้มข้นเหล็ก ตั้งแต่ 3000-6000 ppmd ส่วนการแลกเปลี่ยนไอออนลบ ข่ายงาน [5-13-13-2] สำหรับความเข้มข้น 0-2000 ppm ซึ่งแบบจำลองข่ายงานนิวรัลการกระจายย้อนกลับชั้นซ่อน 2 ชั้น ให้ผลการทำนายที่ แม่นยำในการทำนายโพไฟล์ความเข้มข้นในกระบวนการ
Other Abstract (Other language abstract of ETD)
This paper describes the neural network models for the prediction of the concentration profile of hydrochloric acid recovery process that consist of double fixed bed ion exchange columns. The ion exchange treatment is used to remove the Fe²⁺ and Fe³⁺ ion from the pickling liquor to increase the acid concentration for reuse in pickling process. This process is complexity and highly nonlinear cause its difficult to model by the first principle. Therefore, an attractive alternative technique, neural network has been applied to model this system because of its ability to model complex nonlinear process, ever when process understanding is limited. The process data are generated from hydrochloric acid recovery pilot plant and use for training and testing the neural network models. Backpropagation and Lenvenberg-Marquardt techniques are used to train the varied neural network architectures and the accuracy of the obtained models have been examined using test data set. The optimal neural network architectures of this process can be evaluated by MSE minimum technique. From this technique, the optimal architecture of cation resin column for 0-3000 ppm and 3000-6000 ppm [Fe] concentration are [5-11-13-2] and [5-8-9-2] architecture respectively. For anion resin column, the optimal neural network architecture of 0-2000 ppm [Fe] concentration is [5-13-13-2] architecture. The simulation results have shown that the multilayer feedforward neural network models with two hidden layers provide sufficiently accurate prediction of the concentration profile of the process.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
ตั้งธีระสุนันท์, พันธพงศ์, "แบบจำลองข่ายงานนิวรัลสำหรับการทำนายความเข้มข้นกรดและความเข้มข้นไอออนเหล็กที่ได้รับจากกระบวนการนำกลับกรดไฮโดรคลอริกโดยการแลกเปลี่ยนไอออน" (2004). Chulalongkorn University Theses and Dissertations (Chula ETD). 65364.
https://digital.car.chula.ac.th/chulaetd/65364