Chulalongkorn University Theses and Dissertations (Chula ETD)

Invariance properties of dependence measures

Other Title (Parallel Title in Other Language of ETD)

สมบัติไม่แปรเปลี่ยนของตัววัดการขึ้นต่อกัน

Year (A.D.)

2015

Document Type

Thesis

First Advisor

Songkiat Sumetkijakan

Faculty/College

Faculty of Science (คณะวิทยาศาสตร์)

Degree Name

Master of Science

Degree Level

Master's Degree

Degree Discipline

Mathematics

DOI

10.58837/CHULA.THE.2015.1047

Abstract

Li gave a generalization of non-symmetric copula-based dependence measure, such as the Trutschnig\'s measure of dependence. A precise sufficient condition which makes Li\'s generalization a non-symmetric measure of dependence is given and proved rigorously. Supported by its non-symmetric dependence measure properties, we symmetrize the Li\'s non-symmetric measure of dependence and investigate its properties. Specifically, we analyze the key properties of dependence measures including well-defined property, abilities to detect independence and dependence at the two extreme values $0,1$ respectively, and invariance under the certain types of transformations. In particular, we find, via several examples, that a dependence measure possessing an ability to detect a larger class of dependences tends to be invariant under an accordingly large class of transformations. The probabilistic version of maximal information coefficient (MIC) is also proved to be a dependence measure. Lastly, we show that there does not exist a dependence measure which is both invariant under strictly monotonic transformations and able to catch complete dependence.

Other Abstract (Other language abstract of ETD)

ลีให้การวางนัยทั่วไปของตัววัดการขึ้นต่อกันชนิดไม่สมมาตรและมีพื้นจากคอปูลา ซึ่งรวมถึงมาตรวัดการขึ้นต่อกันของทรัตช์นิกด้วย เงื่อนไขพอเพียงที่ชัดเจนซึ่งทำให้มาตรวัดการขึ้นต่อกันของลีกลายเป็นมาตรวัดการขึ้นต่อกันอย่างถูกต้องได้ถูกให้ไว้และถูกพิสูจน์อย่างเคร่งครัด โดยข้อสนับสนุนของสมบัติของมาตรวัดการขึ้นต่อกันชนิดไม่สมมาตรของลี เราจึงทำการสมมาตรตัววัดไม่สมมาตรของลีพร้อมทั้งศึกษาสมบัติของมัน โดยเฉพาะอย่างยิ่ง เรายังวิเคราะห์สมบัติสำคัญของตัววัดการขึ้นต่อกัน ได้แก่ ความแจ่มชัด, ความสามารถในการตรวจจับความเป็นอิสระต่อกันหรือการขึ้นต่อกันด้วยค่าสุดขีด $0,1$ ตามลำดับ และการไม่แปรเปลี่ยนภายใต้ประเภทของการแปลง โดยกล่าวอย่างเฉพาะเจาะจง เราพบผ่านตัวอย่างหลายตัวอย่างว่าตัววัดการขึ้นต่อกันที่สามารถตรวจวัดการขึ้นต่อกันที่มีขนาดใหญ่กว่าจะมีแนวโน้มที่ไม่แปรเปลี่ยนภายใต้การแปลงชนิดที่กว้าง สัมประสิทธิ์ข้อมูลสูงสุดฉบับความน่าจะเป็น (MIC) ได้ถูกพิสูจน์ว่าเป็นตัววัดการขึ้นต่อกัน ท้ายที่สุด เราแสดงว่าไม่มีตัววัดการขึ้นต่อกันที่ทั้งไม่แปรเปลี่ยนต่อการแปลงทางเดียวโดยแท้และสามารถวัดการขึ้นต่อกันอย่างสมบูรณ์ได้

Share

COinS