Chulalongkorn University Theses and Dissertations (Chula ETD)
Convergence of Adaptive Finite Element Methods for Semi-Linear Elliptic Partial Differential Equations
Other Title (Parallel Title in Other Language of ETD)
การลู่เข้าของวิธีไฟไนต์เอลิเมนต์แบบปรับตัวสำหรับสมการเชิงอนุพันธ์ย่อยเชิงวงรีแบบกึ่งเชิงเส้น
Year (A.D.)
2014
Document Type
Thesis
First Advisor
Khamron Mekchay
Faculty/College
Faculty of Science (คณะวิทยาศาสตร์)
Degree Name
Doctor of Philosophy
Degree Level
Doctoral Degree
Degree Discipline
Mathematics
DOI
10.58837/CHULA.THE.2014.897
Abstract
We analyze a standard adaptive finite element method (AFEM) for second order semi-linear elliptic partial differential equations with vanishing boundary over a polygonal domain in R^{2}. We prove a contraction property for the weighted sum of the energy error and the error estimator between any two consecutive loops, which implies the convergence of AFEM. The result is obtained based on the assumptions that the initial triangulation is sufficiently refined and a Lipschitz constant is sufficiently small in order to deal with the nonlinear inhomogeneous term f(x, u(x)), which is also assumed to be Lipschitz in the second variable.
Other Abstract (Other language abstract of ETD)
งานวิจัยนี้วิเคราะห์วิธีไฟไนต์เอลิเมนต์แบบปรับตัวสำหรับสมการเชิงอนุพันธ์ย่อยเชิงวงรีอันดับสองแบบกึ่งเชิงเส้นบนโดเมนรูปหลายเหลี่ยมในปริภูมิ โดยพิจารณาปัญหาแบบดิริชเลทที่มีเงื่อนไขค่าขอบเป็น ศูนย์ และได้พิสูจน์การลู่เข้าของระเบียบวิธีนี้ โดยการพิสูจน์การหดตัวของผลรวมถ่วงน้ำหนักของค่าความผิด พลาด และค่าประมาณความผิดพลาดที่มาจากสองขั้นตอนที่ต่อเนื่องกัน โดยมีเงื่อนไขที่ว่า การแบ่งโดเมนเชิงสามเหลี่ยมตอนเริ่มต้นมีความละเอียดเพียงพอ และฟังก์ชันไม่เชิงเส้น f(x,u(x)) เป็นฟังก์ชันลิพชิทซ์ในตัวแปร ตัวที่สอง และค่าคงตัวลิพชิทซ์เล็กเพียงพอ
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Jampawai, Thanatyod, "Convergence of Adaptive Finite Element Methods for Semi-Linear Elliptic Partial Differential Equations" (2014). Chulalongkorn University Theses and Dissertations (Chula ETD). 62513.
https://digital.car.chula.ac.th/chulaetd/62513