Chulalongkorn University Theses and Dissertations (Chula ETD)
Solving some Moser's worm Problems Using Numerical Minimization
Other Title (Parallel Title in Other Language of ETD)
การแก้ปัญหาการปิดทับเส้นโค้งของโมเซอร์บางปัญหาโดยวิธีหาค่าต่ำสุดเชิงตัวเลข
Year (A.D.)
2008
Document Type
Thesis
First Advisor
Wacharin Wichiramala
Faculty/College
Faculty of Science (คณะวิทยาศาสตร์)
Degree Name
Master of Science
Degree Level
Master's Degree
Degree Discipline
Mathematics
DOI
10.58837/CHULA.THE.2008.1113
Abstract
One of the most difficult things to study Moser’s worm problem is how to prove whether or not the considered set is a cover. With the aid of numerical minimization, the lower bound of the un-coverable unit arc can be found. Clearly, if the lower bound is longer than 1 unit, then we have already proved that it’s a cover. In this research, an equilateral triangle, an isosceles right angled triangle, and a 30°- 60°- 90° triangle are tested. The method works quite better on covers with geometric symmetries.
Other Abstract (Other language abstract of ETD)
หนึ่งในปัญหาที่ยากที่สุดในการศึกษาปัญหาแผ่นปิดทับเส้นโค้งของโมเซอร์คือ การพิสูจน์ว่า เซตที่พิจารณาสามารถเป็นแผ่นปิดทับได้หรือไม่ แต่เราสามารถใช้คอมพิวเตอร์ช่วยในการหาเส้นโค้งที่สั้นที่สุดที่เซตที่เราพิจารณาไม่สามารถปิดทับได้ เห็นได้ชัดว่า ถ้าเส้นที่สั้นที่สุดนี้ยาวมากกว่า 1 หน่วย นั่นคือเราได้ข้อสรุปแล้วว่าเซตที่เราพิจารณานั้นสามารถใช้เป็นแผ่นปิดทับได้ ในงานวิจัยนี้ เราได้พยายามศึกษาแผ่นปิดทับรูปสามเหลี่ยม 3 ชนิดคือ แผ่นปิดทับรูปสามเหลี่ยมด้านเท่า แผ่นปิดทับรูปสามเหลี่ยมหน้าจั่วที่มีมุม ๆ หนึ่งเป็นมุมฉากและแผ่นปิดทับรูปสามเหลี่ยมที่มีมุมเป็น30°- 60°- 90° เราได้พบว่า วิธีการที่เราใช้ศึกษานี้ใช้ได้ผลดีกว่าในกรณีแผ่นปิดทับที่มีสมมาตรทางเรขาคณิต
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Tansatian, Panuwat, "Solving some Moser's worm Problems Using Numerical Minimization" (2008). Chulalongkorn University Theses and Dissertations (Chula ETD). 58566.
https://digital.car.chula.ac.th/chulaetd/58566