Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Quantum neural network model for regression problems

Year (A.D.)

2021

Document Type

Thesis

First Advisor

ประภาส จงสถิตย์วัฒนา

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมคอมพิวเตอร์

DOI

10.58837/CHULA.THE.2021.957

Abstract

ควอนตัมคอมพิวเตอร์ได้แสดงให้เห็นถึงความสามารถที่เหนือกว่าคอมพิวเตอร์แบบคลาสสิคในการแก้ไขปัญหาบางประเภทด้วยการใช้กฎของกลศาสตร์ควอนตัมและด้วยการรวมเอาความรู้ทางด้านการเรียนรู้ของเครื่องและควอนตัมคอมพิวเตอร์ทำให้เกิดองค์ความรู้ใหม่ที่เรียกว่าการเรียนรู้ของเครื่องแบบควอนตัม ควอนตัมโครงข่ายประสาทเทียมเป็นหนึ่งในรูปแบบของการใช้ความรู้ของการเรียนรู้ของเครื่องและคอมพิวเตอร์ควอนตัมด้วยการดัดแปลงความคิดจากการทำโครงข่ายประสาทเทียมแบบคลาสสิคและการใช้ควอนตัมเกทแบบปรับค่าได้มาเป็นค่าน้ำหนักของโครงข่ายประสาทเทียม ในงานวิจัยนี้ได้นำเสนอการประยุกต์ใช้ควอนตัมโครงข่ายประสาทเทียมด้วยข้อมูลจากโลกจริงเพื่อแก้ไขปัญหาการถดถอยเพื่อทำนายจำนวนโทเคนที่ใช้ในระบบประมูลรายวิชา โดยการทดลองจะถูกทำบนเครื่องจำลองคอมพิวเตอร์ควอนตัมของไอบีเอ็ม(Qiskit) ผลลัพธ์ของการทดลองได้แสดงให้เห็นว่าควอนตัมโครงข่ายประสาทเทียมสามารถบรรลุผลที่ดีในการทำนายเมื่อเปรียบเทียบกับโครงข่ายประสาทเทียมแบบคลาสสิคโดยโมเดลที่ดีที่สุดมีค่ารากที่สองของค่าเฉลี่ยความผิดพลาดกำลังสอง(RMSE) ที่ 6.38% วิธีการนี้ทำให้เกิดการเปิดกว้างสำหรับโอกาสที่จะสำรวจผลประโยชน์ของการเรียนรู้ของเครื่องแบบควอนตัมในการทำวิจัยในอนาคต

Other Abstract (Other language abstract of ETD)

Quantum computer has shown the advantage over the classical computer to solve some problems using the laws of quantum mechanics. With a combination of knowledge of machine learning and quantum computing, Quantum neural networks adapted the concept from classical neural networks and apply parameterized quantum gates as neural network weights. In this paper, we present an application of quantum neural networks with real-world data to predict token price used in a course bidding system. The experiments were carried out on the Qiskit quantum simulator. The result shows that quantum neural networks can achieve a good prediction result compared to the classical neural network. The best model configuration has the lowest RMSE 6.38%. This approach opens an opportunity to explore the benefit of quantum machine learning in many research fields in the future.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.