Chulalongkorn University Theses and Dissertations (Chula ETD)
Locally factorizable transformation semigroups
Other Title (Parallel Title in Other Language of ETD)
เซมิกรุปของการแปลงที่แยกแฟกเตอร์ได้อย่างเฉพาะที่
Year (A.D.)
1984
Document Type
Thesis
First Advisor
Yupaporn Kemprasit
Faculty/College
Graduate School (บัณฑิตวิทยาลัย)
Degree Name
Master of Science
Degree Level
Master's Degree
Degree Discipline
Mathematics
DOI
10.58837/CHULA.THE.1984.634
Abstract
By the local subsemigroups of a semigroup S we mean the subsemigroups of S in the form eSe where e is an idempotent of S. A semigroup S is said to be factorizable if there exists a subgroup G of S such that S = GE(S) where E(S) is the set of all idempotents of S. A semigroup in which each local subsemigroup is factorizable is called a locally factorizable semigroup. Let X be a set. For a partial transformation α of X, the shift of α is defined to be the set S(α) = { X Ɛ Δα l Xα ≠ X} where Δα is the domain of α. A partial transformation α of X is said to be almost identical if and only if it had a finite Shift. In this thesis, we characterize locally factorizable transformation semigroups as follcws : THEOREM. The partial transformation semigroup on a set X is locally factorizable if and only if X is finite. COROLLARY. Let X be a set and let S be the full transformation semigroup on X or the symmetric inverse semigroup on X (the 1-1 partial transformation semigroup on X). Then the transformation semigroup S is locally factorizable if and if X is finite. THEOREM. For any set X, the semigroup of all almost identical partial transformations of X is finite. COROLLARY. For any set X, the semigroup of all almost identical transformations of X and the semigroup of all almost identical 1-1 partial transformations of X are locally factorizable. THEOREM. For any positive integer n and for any field F, the multiplicative semigroup of all nxn matrices over F is locally factorizable.
Other Abstract (Other language abstract of ETD)
เซมิกรุปย่อยเฉพาะที่ของเซมิกรุป S หมายถึงเซมิกรุปย่อยของ S ซึ่งอยู่ในรูปแบบ eSe โดยที่ e เป็นไอเดมโพเทนต์ของ S เราเรียกเซมิกรุป S ว่าเป็นเซมิกรุปที่แยกแฟกเตอร์ได้ถ้ามีกรุปย่อย G ของ S ซึ่ง ทำให้ S = GE(S) โดยที่ E(S) เป็นเซดของไอเดมโพเทนต์ทั้งหมดของ S และเรียกเซมิกรุป S ว่าเป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ ถ้าแต่ละเวมิกรุปย่อยเฉพาะที่ S แยกแฟกเตอร์ได้ ให้ X เป็นเซตใด ๆ สำหรับการแปลงบางส่วน α ของ X ให้ S(α) = { X Ɛ Δα l Xα ≠ X} โดยที่ Δα เป็นโดเมนของ α เรากล่าวว่าการแปลงบางส่วน α ของ X เกือบเป็นเอกลักษณ์ถ้า S(α) เป็นเซตจำกัด ในวิทยานิพนธ์ฉบับนี้ เราให้ลักษณะของเซมิกรุปของการแปลงที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ดังต่อไปนี้ ทฤษฎี เซมิกรุปของการแปลงบางส่วนบนเซต X เป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่เมื่อและต่อเมื่อ X เป็นเซตจำกัด บทแทรก ให้ X เป็นเซตใด ๆ และให้ S เป็นเซมิกรุปของการแปลงเต็มบนเซต X หรือเป็นเซมิกรุปผกผัน สมมาตรบนเซต X (เซมิกรุปของการแปลงบางส่วนชนิด 1-1 บนเซต X) ได้ว่า S เป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ เมื่อและต่อเมื่อ X เป็นเซตจำกัด ทฤษฏี สำหรับเซต X ใด ๆ เซมิกรุปของการแปลงบางส่วนที่เกือบเป็นเอกลักษณ์ของเซต X ทั้งหมดเป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ บทแทรก สำหรับเซต X ใด ๆ เซริกรุปของการแปลงการแปลงที่เกือบเป็นอกลักษณะของเซต X ทั้งหมดและเซมิกรุปของการแปลงบางส่วนชนิด 1-1 ที่เกือบเป็นเอกลักษณ์ของเซต X ทั้งหมดเป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ ทฤษฎี สำหรับจำนวนเต็มบวก n และฟิลด์ F ใด ๆ เซมิกรุปของเมตริกซ์ขนาด nxn บน F ทั้งหมดภายใต้การคูณของเมตริกซ์เป็นเซมิกรุปที่แยกกแฟกเตอร์ได้อย่างเฉพาะที่
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Jampachon, Prakit, "Locally factorizable transformation semigroups" (1984). Chulalongkorn University Theses and Dissertations (Chula ETD). 53180.
https://digital.car.chula.ac.th/chulaetd/53180