Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Token allocation for courses bidding with machine learning method

Year (A.D.)

2020

Document Type

Thesis

First Advisor

ประภาส จงสถิตย์วัฒนา

Second Advisor

เกริก ภิรมย์โสภา

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิทยาศาสตร์คอมพิวเตอร์

DOI

10.58837/CHULA.THE.2020.1028

Abstract

ทฤษฎีการประมูลเป็นหนึ่งในศาสตร์ที่แพร่หลายนิยมไปในหลากหลายอุตสาหกรรมและภาคส่วนต่าง ๆ ทั้งภาคเอกชน ภาครัฐบาล และภาคการศึกษา เพื่อการจัดการทรัพยากรที่มีอยู่อย่างจำกัดให้เกิดประสิทธิภาพสูงสุด ดังเช่นภาควิชาวิศวกรรมคอมพิวเตอร์ จุฬาลงกรณ์มหาวิทยาลัยได้นำเอาทฤษฎีดังกล่าวมาบริหารจัดการปัญหาการลงทะเบียนของนิสิตนักศึกษา โดยใช้การประมูลทดแทนการวิธีการลงทะเบียนแบบเดิม นิสิตนักศึกษาจะได้เงินจำลองในปริมาณที่จำกัดจำนวนหนึ่งสำหรับใช้ตลอดการศึกษา ซึ่งหากใครมีความต้องการเรียนในรายวิชานั้นมากก็จำเป็นจะต้องใช้เงินจำลองจำนวนมากกว่าปกติเป็นต้น อย่างไรก็ตามหากใช้เงินจำลองไปในปริมาณมากเกินความจำเป็นอาจก่อให้เกิดความสูญเสียโอกาสในการประมูลรายวิชาที่สำคัญอื่น ๆ การวิจัยชิ้นนี้ จึงทดสอบการประเมินการจัดสรรโทเคนสำหรับการประมูลวิชาด้วยการเรียนรู้ของเครื่อง จำนวน 3 วิธี ได้แก่ ต้นไม้ตัดสินใจ แรนดอมฟอร์เรส และโครงข่ายประสาทเทียม เพื่อเป็นเครื่องมือในการกำหนดกลยุทธ์ หรือ วางแผนการเรียนให้เกิดประสิทธิภาพและเกิดประโยชน์ต่อผู้ใช้งานสูงสุด และผลการวิจัยพบว่า แรมดอมฟอร์เรสเป็นวิธีที่มีประสิทธิภาพมากที่สุดในการนำไปใช้ทำนายค่าโทเคนเพื่อนำไปใช้ในการประมูลวิชาต่อไป

Other Abstract (Other language abstract of ETD)

Auction theory is spread to many industries as the private sector, government, and educational sector to manage resource efficiency. The computer engineering department, Chulalongkorn university, adopt the auction theory to allocate course seats to students instead of an old registration system. At the start, every student is given a limited token throughout the semester. Those who need any courses much more than another one then pay more, However paying overprice could be lost a chance to bid other necessary courses. This research explores token allocation for course bidding with three different machine learning methods, Decision Tree, Random Forest, Artificial Neural Network, for being a tool to plan a course registration strategy. The result shows that Random Forest is the best performance for predict token price for the course bidding system.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.