Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
Token allocation for courses bidding with machine learning method
Year (A.D.)
2020
Document Type
Thesis
First Advisor
ประภาส จงสถิตย์วัฒนา
Second Advisor
เกริก ภิรมย์โสภา
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)
Degree Name
วิทยาศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
วิทยาศาสตร์คอมพิวเตอร์
DOI
10.58837/CHULA.THE.2020.1028
Abstract
ทฤษฎีการประมูลเป็นหนึ่งในศาสตร์ที่แพร่หลายนิยมไปในหลากหลายอุตสาหกรรมและภาคส่วนต่าง ๆ ทั้งภาคเอกชน ภาครัฐบาล และภาคการศึกษา เพื่อการจัดการทรัพยากรที่มีอยู่อย่างจำกัดให้เกิดประสิทธิภาพสูงสุด ดังเช่นภาควิชาวิศวกรรมคอมพิวเตอร์ จุฬาลงกรณ์มหาวิทยาลัยได้นำเอาทฤษฎีดังกล่าวมาบริหารจัดการปัญหาการลงทะเบียนของนิสิตนักศึกษา โดยใช้การประมูลทดแทนการวิธีการลงทะเบียนแบบเดิม นิสิตนักศึกษาจะได้เงินจำลองในปริมาณที่จำกัดจำนวนหนึ่งสำหรับใช้ตลอดการศึกษา ซึ่งหากใครมีความต้องการเรียนในรายวิชานั้นมากก็จำเป็นจะต้องใช้เงินจำลองจำนวนมากกว่าปกติเป็นต้น อย่างไรก็ตามหากใช้เงินจำลองไปในปริมาณมากเกินความจำเป็นอาจก่อให้เกิดความสูญเสียโอกาสในการประมูลรายวิชาที่สำคัญอื่น ๆ การวิจัยชิ้นนี้ จึงทดสอบการประเมินการจัดสรรโทเคนสำหรับการประมูลวิชาด้วยการเรียนรู้ของเครื่อง จำนวน 3 วิธี ได้แก่ ต้นไม้ตัดสินใจ แรนดอมฟอร์เรส และโครงข่ายประสาทเทียม เพื่อเป็นเครื่องมือในการกำหนดกลยุทธ์ หรือ วางแผนการเรียนให้เกิดประสิทธิภาพและเกิดประโยชน์ต่อผู้ใช้งานสูงสุด และผลการวิจัยพบว่า แรมดอมฟอร์เรสเป็นวิธีที่มีประสิทธิภาพมากที่สุดในการนำไปใช้ทำนายค่าโทเคนเพื่อนำไปใช้ในการประมูลวิชาต่อไป
Other Abstract (Other language abstract of ETD)
Auction theory is spread to many industries as the private sector, government, and educational sector to manage resource efficiency. The computer engineering department, Chulalongkorn university, adopt the auction theory to allocate course seats to students instead of an old registration system. At the start, every student is given a limited token throughout the semester. Those who need any courses much more than another one then pay more, However paying overprice could be lost a chance to bid other necessary courses. This research explores token allocation for course bidding with three different machine learning methods, Decision Tree, Random Forest, Artificial Neural Network, for being a tool to plan a course registration strategy. The result shows that Random Forest is the best performance for predict token price for the course bidding system.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
จุฑามณี, ชนบดี, "การประเมินการจัดสรรโทเคนสำหรับการประมูลวิชาด้วยการเรียนรู้ของเครื่อง" (2020). Chulalongkorn University Theses and Dissertations (Chula ETD). 3686.
https://digital.car.chula.ac.th/chulaetd/3686