Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

A comparative study on estimation from regression model For type-I right-censored data from lognormal distribution

Year (A.D.)

2018

Document Type

Thesis

First Advisor

อนุภาพ สมบูรณ์สวัสดี

Faculty/College

Faculty of Commerce and Accountancy (คณะพาณิชยศาสตร์และการบัญชี)

Department (if any)

Department of Statistics (ภาควิชาสถิติ)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

สถิติ

DOI

10.58837/CHULA.THE.2018.1412

Abstract

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบวิธีการประมาณค่าจากตัวแบบ การถดถอย เมื่อตัวแปรตามมีการแจกแจงแบบล็อกนอร์มอลและตัวแปรตามบางค่าเป็นข้อมูล ที่ถูกตัดปลายทางขวาแบบที่ 1 ด้วยวิธีกำลังสองต่ำสุด (OLS) วิธีภาวะน่าจะเป็นสูงสุด (MLE) วิธีของแชตเทอร์จีและแมคลีช (CM) และวิธีภาวะน่าจะเป็นสูงสุดด้วยขั้นตอนวิธีอีเอ็ม (MLE_EM) ข้อมูลในการศึกษาได้จากการจำลองข้อมูลจำนวน 81 สถานการณ์ สถานการณ์ละ 10,000 รอบ ขนาดตัวอย่าง (n) เท่ากับ 30, 50, 100 และเปอร์เซ็นต์การถูกตัดปลายทางขวาของตัวแปรตาม (r) เท่ากับ 10%, 20%, 30% และอัตราส่วนความแปรปรวนของตัวแปรอิสระตัวที่ 1 ต่อตัวแปรอิสระ ตัวที่ 2 คือ 1:1, 1:2, 1:5 และอัตราส่วนความแปรปรวนรวมของตัวแปรอิสระต่อความคลาดเคลื่อน คือ 2:1, 1:1, 1:2 จากการศึกษาพบว่า 1) วิธี MLE และวิธี MLE_EM มีประสิทธิภาพสูงสุดเมื่อตัวอย่างมีขนาดใหญ่ (n=100) หรือตัวแปรตามถูกตัดปลายทางขวามาก (r=30%) ในทางกลับกัน 2) วิธี OLS เป็นวิธีที่มีประสิทธิภาพสูงสุดเมื่อตัวอย่างมีขนาดเล็ก (n=30) หรือตัวแปรตามถูกตัดปลายทางขวาน้อย (r=10%) และ 3) วิธี CM เป็นวิธีที่มีประสิทธิภาพสูงสุดในสถานการณ์ที่เหลือ กล่าวคือ เมื่อตัวอย่างมีขนาดปานกลาง (n=50) หรือตัวแปรตามถูกตัดปลายทางขวาปานกลาง (r=20%) นอกจากนั้นพบว่า 4) ทุกวิธีมีประสิทธิภาพมากขึ้นเมื่อตัวอย่างมีขนาดใหญ่ขึ้นหรือตัวแปรตาม ถูกตัดปลายทางขวาน้อยลงหรือความคลาดเคลื่อนกระจายตัวน้อยกว่าตัวแปรอิสระ

Other Abstract (Other language abstract of ETD)

The objective of this research is to compare the estimation methods for log-linear regression model with dependent variable under type-I right-censoring: 1) Ordinary Least Squares Method (OLS); 2) Maximum Likelihood Estimation (MLE); 3) Chatterjee and McLeish Method (CM); and 4) Maximum Likelihood Estimation using the EM algorithm (MLE_EM). The results on this research are from 81 simulated scenarios with simulation size of 10,000. The sample sizes (n) are 30, 50, 100; the censoring proportions of data (r) are 10%, 20%, 30%; the ratio of variances of two independent variables of 2:1, 1:1, 1:2; the ratio of the sum of variances of two independent variables to error variance of 2:1, 1:1, 1:2. The findings are: 1) MLE_EM and MLE perform the best at large sample size (n=100) or high censoring proportion (r=30%); on the other hand, 2) OLS performs the best at small sample size (n=30) or low censoring proportion (r=10%); and 3) CM performs the best generally for the rest of scenarios such that the sample size is moderate (n=50) or censoring proportion is moderate (r=20%); moreover, 4) The efficiency of all of the methods increase when sample size increase or proportion of right-censored data on dependent variable decrease or ratio of the sum of variances of two independent variables to error variance increase.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.