Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

การตรวจจับอาคารจากภาพรับรู้ระยะไกลโดยใช้โยโล

Year (A.D.)

2020

Document Type

Thesis

First Advisor

Nagul Cooharojananone

Second Advisor

Petarpa Boonserm

Faculty/College

Faculty of Science (คณะวิทยาศาสตร์)

Department (if any)

Department of Mathematics and Computer Science (ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์)

Degree Name

Master of Science

Degree Level

Master's Degree

Degree Discipline

Applied Mathematics and Computational Science

DOI

10.58837/CHULA.THE.2020.6

Abstract

Building detection system through the remote sensing of images has been widely studied. In this thesis, we propose a model for detecting buildings at airports in Asia through different levels of remote sensing image. The proposed model is improved using the You Only Look Once (YOLO) algorithm based on the convolutional neural network (CNN). We also adjust an inputted image to our model using the Jet Saliency Map. The buildings to be detected in this study are the passenger terminals, the control towers, the cargo buildings, and the hangars. The data set has been collected from 322 different airports in Asia. Furthermore, our improved model is also examined for efficiency and accuracy. The results show that it can detect the intended objects efficiently and provides higher accuracy than the original model.

Other Abstract (Other language abstract of ETD)

การตรวจจับอาคารจากภาพรับรู้ระยะไกลนั้นได้รับการศึกษาอย่างกว้างขวาง ซึ่งในวิทยานิพนธ์นี้เราจะเสนอแบบจำลองสำหรับการตรวจจับอาคารของสนามบินในภูมิภาคเอเชียผ่าน ภาพรับรู้ระยะไกลในระดับความสูงหลายระดับแบบจำลองที่ได้นำเสนอนั้นได้รับการปรับปรุง จากการใอัลกอริทึมโยโลซึงอิงตามแนวคิดของโครงข่ายประสาทแบบคอนโวลูชัน นอกจากนี้ เรายังปรับปรุงรูปภาพที่จะใช้ส่งเข้าไปในแบบจำลองของเราโดยใช้แผนภาพเด่นชัดแบบเจท โดยอาคารที่เราต้องการตรวจจับสำหรับการศึกษาครั้งนี้ ได้แก่ อาคารผู้โดยสาร อาคารควบคุม อาคารขนส่งสินค้าและโรงเก็บเครื่องบิน ซึ่งชุดข้อมูลดังกล่าวได้รับการเก็บรวบรวมจากสนาม บิน 322 แห่งในภูมิภาคเอเชีย นอกจากนี้แบบจำลองที่ถูกปรับปรุงแล้วยังได้รับการตรวจสอบ ประสิทธิภาพและความแม่นยำซึ่งผลลัพธ์จากการตรวจสอบแสดงให้เห็นว่าสามารถตรวจจับ วัตถุที่ต้องการได้อย่างมีประสิทธิภาพและให้ความแม่นยำสูงกว่าแบบจำลองโยโลดั้งเดิม

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.