Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

A Land Use Classification By Support Vector Machine Tecnique From Landsat 8 Imagery For Estimation Of Water Consumption In The Area Of Kalasin Thailand

Year (A.D.)

2018

Document Type

Thesis

First Advisor

ธงทิศ ฉายากุล

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Survey Engineering (ภาควิชาวิศวกรรมสำรวจ)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมสำรวจ

DOI

10.58837/CHULA.THE.2018.1279

Abstract

งานวิจัยนี้มีจุดประสงค์เพื่อเปรียบเทียบการจำแนกการใช้ประโยชน์ที่ดินจากภาพถ่ายดาวเทียม Landsat 8 ในปี พ.ศ. 2557 และ 2559 ด้วยวิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine: SVMs) กับวิธีความน่าจะเป็นไปได้สูงสุด (Maximum Likelihood Classifier: MLC) ในพื้นที่จังหวัดกาฬสินธุ์ นำผลที่ได้จากการจำแนกมาวิเคราะห์การเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน เพื่อประเมินปริมาณการใช้น้ำโดยใช้ข้อมูลของการใช้น้ำในกิจกรรมต่าง ๆ ซึ่งประกอบด้วย การใช้น้ำในด้านเกษตรกรรม อุตสาหกรรม และการอุปโภคบริโภค นำมาวิเคราะห์ร่วมกับข้อมูลเชิงพื้นที่จากการจำแนกการใช้ประโยชน์ที่ดินในแต่ละประเภท ประเมินปริมาณน้ำท่าด้วยแบบจำลองอุทกวิทยา SWAT ซึ่งผลที่ได้พบว่า การจำแนกด้วยวิธีซัพพอร์ตเวกเตอร์แมชชีนให้ค่าความถูกต้องโดยรวมสูงกว่าวิธีความน่าจะเป็นไปได้สูงสุด 0.50 - 4.49 เปอร์เซ็นต์ เมื่อนำผลที่ได้จากการการจำแนกมาวิเคราะห์ปริมาณการใช้น้ำพบว่าในพื้นที่จังหวัดมีปริมาณการใช้น้ำในด้านการเกษตรมากกว่าด้านอื่นๆ จากการประเมินปริมาณน้ำท่าเพื่อหาปริมาณน้ำต้นทุนธรรมชาติในพื้นที่ศึกษา พบว่ายังไม่เพียงพอกับความต้องการใช้น้ำในพื้นที่ ซึ่งจะต้องมีการจัดสรรน้ำจากแหล่งอื่นๆ เพื่อให้เพียงพอต่อความต้องการ

Other Abstract (Other language abstract of ETD)

The comparison of land use classification from Landsat 8 satellite imagery in 2014 and 2016 by support vector machine technique and maximum likelihood classifier in the area Kalasin Thailand. The results from classification were to analyzed land use changes and to estimate water consumptions in aspect of agricuture, industry and consumer uses with the estimation of the runoff as well as the SWAT hydrological model. The results showed that support vector machine technique overall accuracy is significants better than maximum likelihood classifier about 0.50 – 4.49 %. In the study area, water consumption in agriculture is higher than other. Without any water from irrigation, the results provided of runoff alone are not enough to the demand of the total water consumption.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.