Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Face Recognition with Occlusion Using Convolutional Neural Network and 2DPCA and 2DLDA Image Reconstruction

Year (A.D.)

2018

Document Type

Thesis

First Advisor

ชาญชัย ปลื้มปิติวิริยะเวช

Second Advisor

เผดิม หนังสือ

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมและเทคโนโลยีการป้องกันประเทศ

DOI

10.58837/CHULA.THE.2018.1198

Abstract

แม้ว่าระบบจดจำใบหน้าส่วนใหญ่ต้องการส่วนประกอบของใบหน้าทั้งหมดเพื่อผลลัพธ์ที่แม่นยำ แต่ในโลกแห่งความเป็นจริงหลายคนรวมถึงผู้ก่อการร้ายมักอำพรางตัวเองจากกล้องวงจรปิดด้วยการสวมแว่นกันแดดหรือผ้าพันคอหรือหลีกเลี่ยงมุมกล้อง ทำให้การจดจำใบหน้ามีความท้าทายมากขึ้น ในวิทยานิพนธ์นี้ใช้การวิเคราะห์องค์ประกอบสองมิติ (2DPCA) และการวิเคราะห์แบ่งแยกเชิงเส้นสองมิติ (2DLDA) ประยุกต์กับการรวบรวมข้อมูลภาพแบบโครงข่ายประสาทแบบสังวัฒนาการ (Convolutional Neural Network) โดยใช้แบบจำลองของ Alexnet เมื่อใช้ฐานข้อมูล AR กับ 227 มิติเวกเตอร์เฉพาะ (Eigenvector) สำหรับ 2DPCA และ 2DLDA ให้ความแม่นยำร้อยละ 53.06 และ 49.71 ตามลำดับ อย่างไรก็ตามเมื่อใช้เวกเตอร์เฉพาะสำหรับสร้างภาพใหม่ความแม่นยำจะเพิ่มขึ้นเป็นร้อยละ 81.55 และ 80.56 ตามลำดับ เมื่อใช้ฐานข้อมูล GTAV กับ 227 มิติเวกเตอร์เฉพาะ สำหรับ 2DPCA และ 2DLDA ให้ความแม่นยำร้อยละ 86.36 และ 78.54 ตามลำดับ อย่างไรก็ตามเมื่อใช้เวกเตอร์เฉพาะสำหรับสร้างภาพใหม่ความแม่นยำจะเพิ่มขึ้นเป็นร้อยละ 96.46 และ 91.92 ตามลำดับ

Other Abstract (Other language abstract of ETD)

Although most face recognition systems require all face components for accurate results, in the real world, many people including the terrorists often camouflage themselves from CCTVs by wearing sunglasses or scarf or evade the camera angle. This makes face recognition more challenging. In this thesis, we are to recognize faces with occlusions using two-dimensional principal component analysis (2DPCA) and two-dimensional linear discriminant analysis (2DLDA), which are applied together with convolutional neural network using Alexnet model. When using the AR database with 227 eigenvectors for 2DPCA and 2DLDA, the recognition accuracy is 53.06% and 49.71%, respectively. However, when using the eigenvectors to reconstruct a new image, the accuracy is increased to 81.55% and 81.62%, respectively. When using the GTAV database with 227 eigenvectors for 2DPCA and 2DLDA, the recognition accuracy is 87.12% and 83.08%, respectively. When using the eigenvectors to reconstruct a new image, the accuracy is increased to 97.22% and 94.95%, respectively.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.