Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

A COMPARATIVE STUDY OF HYBRID TIME SERIES MODELS FOR FORECASTING SEASONAL TIME SERIES

Year (A.D.)

2017

Document Type

Thesis

First Advisor

นัท กุลวานิช

Faculty/College

Faculty of Commerce and Accountancy (คณะพาณิชยศาสตร์และการบัญชี)

Department (if any)

Department of Statistics (ภาควิชาสถิติ)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

สถิติ

DOI

10.58837/CHULA.THE.2017.1532

Abstract

งานวิจัยนี้เป็นการศึกษาเปรียบเทียบความแม่นยำของค่าพยากรณ์ที่ได้จาก 3 ตัวแบบ คือ ตัวแบบ ARIMA ที่มีฤดูกาล(SARIMA), ตัวแบบผสมระหว่างตัวแบบ ARIMA ที่มีฤดูกาลกับตัวแบบโครงข่ายประสาทเทียม(SARIMA-ANN) และตัวแบบผสมระหว่างตัวแบบ ARIMA ที่มีฤดูกาลกับตัวแบบซัพพอร์ทเวกเตอร์แมชชีน(SARIMA-SVM) โดยทำการศึกษาเปรียบเทียบทั้งในส่วนของข้อมูลจริงและข้อมูลจำลอง ในส่วนของข้อมูลจริงนั้นได้มีการนำราคาขายปลีกมะนาวเบอร์ 1-2 (หน่วยเป็นบาท/ผล) จากกรมการค้าภายใน กระทรวงพาณิชย์ ซึ่งเป็นราคาผลผลิตทางการเกษตรซึ่งอยู่ในรูปแบบอนุกรมเวลาที่มีปัจจัยเชิงฤดูกาลมาทำการเปรียบเทียบ โดยใช้เกณฑ์รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย(Root Mean Square Error : RMSE) เป็นเกณฑ์ในการเปรียบเทียบตัวแบบ ผลการศึกษาพบว่าตัวแบบผสมระหว่างตัวแบบ SARIMA กับตัวแบบโครงข่ายประสาทเทียม(SARIMA-ANN) และตัวแบบผสมระหว่างตัวแบบ SARIMA กับตัวแบบซัพพอร์ทเวกเตอร์แมชชีน(SARIMA-SVM) ให้ผลการพยากรณ์ที่แม่นยำกว่าตัวแบบ SARIMA ทั้งในชุดข้อมูลจริง และชุดข้อมูลจำลอง และสำหรับการพยากรณ์ด้วยชุดข้อมูลจริงราคาขายปลีกมะนาวที่มีลักษณะอนุกรมเวลาที่มีปัจจัยเชิงฤดูกาลสอดคล้องกับตัวแบบ ARIMA(1,1,2)x(0,1,1)12 ตัวแบบผสมระหว่าง ARIMA(1,1,2)x(0,1,1)12 กับตัวแบบโครงข่ายประสาทเทียมให้ค่าพยากรณ์ที่แม่นยำที่สุด รองลงมาคือตัวแบบผสมระหว่าง ARIMA(1,1,2)x(0,1,1)12 กับตัวแบบซัพพอร์ทเวกเตอร์แมชชีน และตัวแบบ ARIMA(1,1,2)x(0,1,1)12 มีความแม่นยำในการพยากรณ์ต่ำที่สุด ซึ่งให้ผลสอดคล้องกับผลการพยากรณ์ด้วยชุดข้อมูลจำลอง

Other Abstract (Other language abstract of ETD)

This research is a comparative study of the prediction accuracy of three models : the seasonal ARIMA model(SARIMA), the hybrid model combining seasonal ARIMA and artificial neuron network model(SARIMA-ANN) and the hybrid model combining seasonal ARIMA and support vector machine model(SARIMA-SVM) using both real and simulated data. The retail prices of lime number 1-2 (in baht/unit) characterized by seasonal time series factor from the Department of Internal Trade of Thailand are used for real data. The Root Mean Square Error(RMSE) is introduced to compare the prediction accuracy among three models. The result of this study shows that hybrid model of SARIMA-ANN and SARIMA-SVM always outperform SARIMA model in both real and simulated data. For the real dataset using retail prices of lime number 1-2 characterized by seasonal time series factor ARIMA(1,1,2)x(0,1,1)12 , hybrid model combining ARIMA(1,1,2)x(0,1,1)12 and ANN provides the most accurate forecast followed by hybrid model combining ARIMA(1,1,2)x(0,1,1)12 and SVM and ARIMA(1,1,2)x(0,1,1)12 ,respectively. The result is consistent with the forecasting in simulated data.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.