Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

ระบบการจำแนกสลักเกลียวสําหรับร้านค้าปลีกจักรยานยนต์

Year (A.D.)

2023

Document Type

Thesis

First Advisor

Suphakant Phimoltares

Faculty/College

Faculty of Science (คณะวิทยาศาสตร์)

Department (if any)

Department of Mathematics and Computer Science (ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์)

Degree Name

Master of Science

Degree Level

Master's Degree

Degree Discipline

Computer Science and Information Technology

DOI

10.58837/CHULA.THE.2023.83

Abstract

The COVID-19 situation in Thailand has led to a rise in online purchase orders, resulting in a higher demand for using motorcycles for shipment, which has also increased the demand for essential components, notably durable and aesthetically pleasing bolts. To enrich their business opportunities, bolts of 19 classes are gathered from a motorcycle shop to establish a systematic bolt classification procedure containing feature extraction stage and classification stage. A feature extraction is formulated from utilization of steps, which are background removal, contour extraction, image rotation, cropping, structural analysis, dominant color analysis, hole detection, and calculating head-to-whole length ratio. Subsequently, five classification models, comprising multi-layer perceptron, random forest, decision tree, support vector machine, and logistic regression, are employed to identify the appropriate class for each bolt. The results indicate that the multi-layer perceptron stands out as the most effective classification model with the proposed features.

Other Abstract (Other language abstract of ETD)

สถานการณ์โควิด-19 ในประเทศไทยนำไปสู่การเพิ่มขึ้นของคำสั่งซื้อออนไลน์ ส่งผลให้ความต้องการใช้รถจักรยานยนต์สำหรับการส่งสินค้าเพิ่มมากขึ้น ซึ่งเพิ่มความต้องการสำหรับส่วนประกอบที่จำเป็นด้วย โดยเฉพาะอย่างยิ่งสลักเกลียวที่ทนทานและสวยงาม เพื่อเพิ่มโอกาสทางธุรกิจสลักเกลียว 19 ประเภทถูกรวบรวมจากร้านค้ารถจักรยานยนต์เพื่อสร้างกระบวนงานการจำแนกประเภทสลักเกลียวอย่างเป็นระบบที่ประกอบด้วยระยะการสกัดลักษณะและระยะการจำแนกประเภท การสกัดลักษณะกำหนดขึ้นจากการใช้หลายขั้นตอนได้แก่ การลบพื้นหลัง การสกัดเส้นรอบขอบ การหมุนภาพ การตัดส่วนภาพ การวิเคราะห์เชิงโครงสร้าง การวิเคราะห์สีเด่น การตรวจหารู และการคำนวณอัตราส่วนความยาวหัวต่อทั้งหมด ต่อจากนั้นตัวแบบการจำแนกประเภทห้าแบบ ซึ่งประกอบด้วยเพอร์เซปตรอนแบบหลายชั้น ป่าสุ่ม ต้นไม้ตัดสินใจ ซัปพอร์ตเวกเตอร์แมชชีน และการถดถอยลอจิสติกถูกนำมาใช้เพื่อระบุประเภทที่เหมาะสมสำหรับสลักเกลียวแต่ละตัว ผลบ่งชี้ว่าเพอร์เซปตรอนแบบหลายชั้นมีความโดดเด่นในฐานะตัวแบบการจำแนกประเภทที่มีประสิทธิภาพมากที่สุดต่อลักษณะที่เสนอ

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.