Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
ระเบียบวิธีการจำลองแบบใช้ตัวแทนสำหรับการทำนายความสามารถในการรับแรงอัดสูงสุดของเสาท่อสเตนเลสสตีลที่เติมคอนกรีต
Year (A.D.)
2023
Document Type
Thesis
First Advisor
Sawekchai Tangaramvong
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Civil Engineering (ภาควิชาวิศวกรรมโยธา)
Degree Name
Master of Engineering
Degree Level
Master's Degree
Degree Discipline
Civil Engineering
DOI
10.58837/CHULA.THE.2023.100
Abstract
This work explores the prediction of axial strength of circular concrete-filled stainless-steel tubular (CFSST) columns, employing advanced machine learning techniques, including Gaussian Process Regression (GPR) and Extreme Gradient Boosting (XGBoost). The dataset comprises over 100 columns from experimental tests, with only a few of them being long or slender, limiting prediction accuracy. To address this, our study introduces a robust numerical modeling approach using Finite Element Method (FEM) to generate additional data points for long columns. The results are then benchmarked against established standards such as American Institute of Steel Construction (AISC) and the Eurocode 4, illustrating the potential of machine learning algorithms to supplant the conventional specifications.
Other Abstract (Other language abstract of ETD)
งานวิจัยฉบับนี้ศึกษาการพยากรณ์ความแข็งแรงตามแนวแกนของท่อเสาเหล็กสแตนเลส ซึ่งมีคอนกรีตเติมอยู่ภายใน (CFSST) โดยใช้เทคนิคการเรียนรู้ของเครื่องคอมพิวเตอร์ (machine learning) ระดับสูง ได้แก่ Gaussian Process Regression (GPR) และ Extreme Gradient Boosting (XGBoost) โดยนำเข้าชุดฐานข้อมูลมากกว่า 100 รายการ ซึ่งมาจากการทดสอบจริง โดยมีชุดข้อมูลเพียงไม่กี่รายการที่ถูกจำแนกเป็นเสายาวหรือเสาที่มีความสูงชะลูด ทำให้เกิดข้อจำกัดทางความแม่นยำในการทำนาย เพื่อแก้ไขปัญหาที่เกิดขึ้น วิทยานิพนธ์ฉบับนี้นำเสนอวิธีการแบบจำลองทางคณิตศาสตร์โดยระเบียบวิธีไฟไนต์เอลิเมนต์ (FEM) เพื่อสร้างจุดข้อมูลเพิ่มเติมสำหรับเสาที่มีความยาวและสูงชะลูด นอกจากนี้ ผลลัพธ์ที่ได้จากแบบจำลองทางคณิตศาสตร์ ถูกนำมาทดสอบกับมาตรฐานที่ได้รับการยอมรับอย่าง AISC (American Institute of Steel Construction) และ Eurocode 4 เพื่อแสดงศักยภาพของอัลกอริทึมการเรียนรู้ของเครื่องที่สามารถเข้าแทนที่ข้อกำหนดแบบดั้งเดิมได้
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Ith, Ly, "Surrogate-assisted model methods for maximum compression capacity predictions of concrete-filled stainless-steel tubular columns" (2023). Chulalongkorn University Theses and Dissertations (Chula ETD). 10198.
https://digital.car.chula.ac.th/chulaetd/10198