Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Will stacking method improve cryptocurrency trading signal prediction accuracy?

Year (A.D.)

2023

Document Type

Thesis

First Advisor

อิสริยะ สัตกุลพิบูลย์

Faculty/College

Faculty of Commerce and Accountancy (คณะพาณิชยศาสตร์และการบัญชี)

Department (if any)

Department of Statistics (ภาควิชาสถิติ)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

การประกันภัย

DOI

10.58837/CHULA.THE.2023.259

Abstract

ปัจจุบันการลงทุนในตลาดสกุลเงินดิจิทัลได้รับความสนใจจากนักลงทุนจำนวนมากเนื่องจากเป็นสินทรัพย์ที่สามารถให้ผลตอบแทนสูง ในทางกลับกันสามารถทำให้เกิดความสูญเสียสูงเช่นกัน การลงทุนในตลาดสกุลเงินดิจิทัลจึงต้องอาศัยเครื่องมีวิเคราะห์ที่มีประสิทธิภาพในการจัดการลงทุน การเรียนรู้ของเครื่องเป็นหนึ่งในเครื่องมือวิเคราะห์ที่ช่วยให้นักลงทุนตัดสินใจได้ดีขึ้น งานวิจัยนี้ได้ศึกษาทำนายสัญญาณการซื้อขายสกุลเงินดิจิทัลโดยเปรียบเทียบวิธีการใช้ตัวแบบป่าสุ่ม ตัวแบบการถดถอยโลจิสติก และตัวแบบการเรียนรู้แบบกลุ่มด้วยเทคนิค Stacking และการวิเคราะห์ทางเทคนิคจาก 50 ตัวบ่งชี้ทางเทคนิค สำหรับสกุลเงินดิจิทัลที่มีเงื่อนไขมูลค่าตามราคาตลาดสูงสุด 20 อันดับแรกข้อมูลความถี่ 1 วัน และ 1 สัปดาห์ ซึ่งจากการศึกษาพบว่าตัวแบบป่าสุ่มให้ค่าความถูกต้องระหว่าง 0.4423-0.7115 ตัวแบบการถดถอยโลจิสติกให้ค่าความถูกต้องระหว่าง 0.4615-0.6346 และตัวแบบการเรียนรู้แบบกลุ่มด้วยเทคนิค Stacking ให้ค่าความถูกต้องระหว่าง 0.4423-0.6538 โดยภาพรวมตัวแบบการถดถอยโลจิสติกเหมาะสมสำหรับสกุลเงินดิจิทัลส่วนใหญ่ อีกทั้งการสร้างตัวแบบด้วยการเรียนรู้แบบกลุ่มด้วยเทคนิค Stacking สามารถช่วยเพิ่มประสิทธิภาพสำหรับการทำนายของตัวแบบ นอกจากนี้ข้อมูลความถี่ 1 สัปดาห์ให้ผลลัพธ์ดีกว่าข้อมูลความถี่ 1 วัน

Other Abstract (Other language abstract of ETD)

Currently, investing in the cryptocurrency market has attracted the attention of many investors because it is an asset that can provide high returns. On the other hand, it can cause high losses as well. Investing in the digital currency market requires efficient analytical machines to manage investments. Machine Learning is one of the analysis tools that helps investors make better decisions. This research study predicts cryptocurrency trading signals by comparing Random Forest, Logistic Regression and Stacking Methods and technical analysis of 50 technical indicators. For the top 20 cryptocurrencies with the highest market capitalization conditions, daily frequency data and weekly frequency data. The study found that the Random Forest model provides an accuracy between 0.4423-0.7115 The Logistic Regression model provides an accuracy between 0.4615-0.6346 and the Stacking Method gives an accuracy between 0.4423-0.6538 Overall, the Logistic Regression model is suitable for most cryptocurrencies. Moreover, creating a model using the Stacking Method can help increase the efficiency of the model's predictions. In addition, weekly frequency data gives better results than daily frequency data.

Included in

Insurance Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.