•  
  •  
 

Abstract

Background: Type 2 diabetes (T2DM) is a major health issue globally, particularly in middle-income countries. This study assessed the prevalence and factors linked to uncontrolled T2DM and proposed a machine learning model for early prediction in southern Thailand.

Methods: Data from 60,903 T2DM patients (2016–2023) were obtained from Thailand's National Health Data Center. Multiple logistic regression identified associated factors, and machine learning models were compared for prediction.

Results: Uncontrolled T2DM prevalence was 53.5%, highest among patients ≤44 years (69.5%) and in Pattani (61.6%), Satun (58.1%), and Narathiwat (56.7%). Risk factors included being female, younger age, early or long disease duration, overweight, and no hypertension. Among models, random forest showed the highest accuracy (83.7%) and neural networks the highest sensitivity (52.6%).

Conclusion: Targeted interventions are needed to address uncontrolled T2DM in southern Thailand. Random forest is the most accurate model for early prediction, supporting efforts to reduce disease burden.

Keywords: Diabetes mellitus, Machine learning, Prediction, Thailand

References

[1] NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024 Nov 23; 404(10467):2077e93. https://doi.org/10.1016/S0140-6736(24)02317-1.

[2] Green A, Hede SM, Patterson CC, Wild SH, Imperatore G, Roglic G, et al. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia 2021 Dec;64(12):2741e50. https://doi.org/10.1007/s00125-021-05571-8.

[3] Hossain MJ, Al-Mamun M, Islam MR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci Rep 2024 Mar 22;7(3):e2004. https://doi.org/10.1002/hsr2.2004.

[4] Blonde L, Aschner P, Bailey C, Ji L, Leiter LA, Matthaei S, et al. Gaps and barriers in the control of blood glucose in people with type 2 diabetes. Diabetes Vasc Dis Res 2017 May; 14(3):172e83. https://doi.org/10.1177/1479164116679775.

[5] Ismail IM, Naik PR. Prevalence and determinants of uncontrolled diabetes mellitus: a community-based study from Karnataka, India. Natl J Community Med 2024 Oct;15(10): 842e9. https://doi.org/10.55489/njcm.151020244459.

[6] Akter F, Alam SMU,HasanMM,RanaMM,ChowdhuryNA, Karim M, et al. Prevalence of uncontrolled Type 2 Diabetes Mellitus and its associated factors among people within southern part of Bangladesh. Chittagong Med Coll Teach Assoc 2019 Jan;30(2):92e8. https://doi.org/10.3329/jcmcta.v30i2.62593.

[7] Dusabeyezu S, Renzaho JN, Sani N. Prevalence and factors associated with uncontrolled type 2 diabetes among patients in Kirehe District, Rwanda: a cross-sectional study. Pan Afr Med J 2024 Jul 24;48:128. https://doi.org/10.11604/pamj.2024.48.128.43864.

[8] Gebreziher LH, Beyene MG, Mekonnen D, Baye AM. Predictors of uncontrolled hypertension among type 2 diabetic patients in Ethiopia: Multicenter cross-sectional study. Int J Cardiol Cardiovasc Risk Prev 2024 Jul 4;22:200308. https://doi.org/10.1016/j.ijcrp.2024.200308.

[9] Adeniyi OV, Yogeswaran P, Longo-Mbenza B, Ter Goon D, Ajayi AI. Cross-sectional study of patients with type 2 diabetes in OR Tambo district, South Africa. BMJ Open 2016 Jul 29;6(7):e010875. https://doi.org/10.1136/bmjopen-2015-010875.

[10] Magliano DJ, Boyko EJ, Genitsaridi I, Piemonte L, Riley P, Salpea P. IDF diabetes atlas. In: Report : diabetes and COVID-19: the role of glycaemic control, diabetes subtype and blood glucose on COVID-19 severity and death. Brussels: International Diabetes Federation; 2022.

[11] Puangpet T, Pongkunakorn T, Chulkarat N, Bunlangjit C, Surawit A, Pinsawas B, et al. Control and complications of diabetes in urban primary care units in Thailand: a crosssectional study. BMC Prim Care 2022 Aug 22;23(1):212. https://doi.org/10.1186/s12875-022-01823-7.

[12] Lertwanichwattana T, Suwannahitatorn P, Mungthin M, Rangsin R. Prognostic nomogram for uncontrolled type 2 diabetes using Thailand nation-wide cross-sectional studies. PLoS One 2024 Apr 10;19(4):e0298010. https://doi.org/10.1371/journal.pone.0298010.

[13] Yeemard F, Srichan P, Apidechkul T, Luerueang N, Tamornpark R, Utsaha S. Prevalence and predictors of suboptimal glycemic control among patients with type 2 diabetes mellitus in northern Thailand: A hospital-based crosssectional control study. PLoS One 2022 Jan 18;17(1):e0262714. https://doi.org/10.1371/journal.pone.0262714.

[14] Phuwilert P, Khiewkhern S, Wongprachum K, Phajan T. Google maps: prevalence and distribution of uncontrolled type 2 diabetes mellitus in Kalasin Province, Thailand. Stud Health Technol Inform 2020 Jun 26;272:403e6. https://doi.org/10.3233/SHTI200580.

[15] Somanawat J, Saramunee K, Chanasopon S. Process, quality and challenges of diabetes care in primary care: a study of district health network in Thailand. Prim Health Care Res Dev 2020 Oct 27;21:e46. https://doi.org/10.1017/S1463423620000468.

[16] American Diabetes Association. Standards of care in diabetes 2023. Diabetes Care 2023 Jan;46:S1e267.

[17] Tongkumchum P, McNeil D. Confidence intervals using contrasts for regression model. Songklanakarin J Sci Technol 2009 Mar e Apr;31(2):151e6.

[18] R CoreTeam. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2023.

[19] Sakboonyarat B, Pima W, Chokbumrungsuk C, Pimpak T, Khunsri S, Ukritchon S, et al. National trends in the prevalence of glycemic control among patients with type 2 diabetes receiving continuous care in Thailand from 2011 to 2018. Sci Rep 2021 Jul 12;11(1):14260. https://doi.org/10.1038/s41598-021-93733-4.

[20] Najafipour H, Farjami M, Sanjari M, Amirzadeh R, Shadkam Farokhi M, Mirzazadeh A. Prevalence and incidence rate of diabetes, pre-diabetes, uncontrolled diabetes, and their predictors in the adult population in Southeastern Iran: Findings From KERCADR Study. Front Public Health 2021 Nov 1;9:611652. https://doi.org/10.3389/fpubh.2021.611652.

[21] Vu GT, Shakib S, King C, Gurupur V, Little BB. Association between uncontrolled diabetes and periodontal disease in US adults: NHANES 2009-2014. Sci Rep 2023 Oct 4;13(1): 16694. https://doi.org/10.1038/s41598-023-43827-y.

[22] Rubio-Almanza M, Camara-Gomez R, Merino-Torres JF. Obesity and type 2 diabetes: Also linked in therapeutic options. Endocrinol Diabetes Nutr (Engl Ed) 2019 Mar;66(3): 140e9. https://doi.org/10.1016/j.endinu.2018.08.003. English, Spanish.

[23] Ling C, R€ onn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab 2019 May 7;29(5):1028e44. https://doi.org/10.1016/j.cmet.2019.03.009.

[24] Anusuya GS, Ravi R, Gopalakrishnan S, Abiselvi A, Stephen T. Prevalence of undiagnosed and uncontrolled diabetes mellitus among adults in South Chennai. Int J Community Med Public Health 2018 Dec;5(12):5200e4. https://doi.org/10.18203/2394-6040.ijcmph20184790.

[25] Cannon A, Handelsman Y, Heile M, Shannon M. Burden of illness in type 2 diabetes mellitus. J Manag Care Spec Pharm 2018 Sep;24(9-a Suppl):S5e13. https://doi.org/10.18553/jmcp.2018.24.9-a.s5.

[26] Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018 Dec;41(12): 2669e701. https://doi.org/10.2337/dci18-0033.

[27] Mehta S, Mocarski M, Wisniewski T, Gillespie K, Narayan KMV, Lang K. Primary care physicians' utilization of type 2 diabetes screening guidelines and referrals to behavioral interventions: a survey-linked retrospective study. BMJ Open Diabetes Res Care 2017 Aug 11;5(1): e000406. https://doi.org/10.1136/bmjdrc-2017-000406.

[28] Hockett CW, Praveen PA, Ong TC, Amutha A, Isom SP, Jensen ET, et al. Clinical profile at diagnosis with youthonset type 1 and type 2 diabetes in two pediatric diabetes registries: SEARCH (United States) and YDR (India). Pediatr Diabetes 2021 Feb;22(1):22e30. https://doi.org/10.1111/pedi.12981.

[29] Siller AF, Tosur M, Relan S, Astudillo M, McKay S, Dabelea D, et al. Challenges in the diagnosis of diabetes type in pediatrics. Pediatr Diabetes 2020 Nov;21(7):1064e73. https://doi.org/10.1111/pedi.13070.

[30] Catapan SC, Nair U, Gray L, Cristina Marino Calvo M, Bird D, Janda M, et al. Same goals, different challenges: A systematic review of perspectives of people with diabetes and healthcare professionals on Type 2 diabetes care. Diabet Med 2021 Sep;38(9):e14625. https://doi.org/10.1111/dme.14625.

[31] Jørgensen PG, Jensen MT, Biering-Sørensen T, Mogelvang R, Fritz-Hansen T, Vilsbøll T, et al. Burden of uncontrolled metabolic risk factors and left ventricular structure and function in patients with type 2 diabetes mellitus. J Am Heart Assoc 2018 Oct 2;7(19):e008856. https://doi.org/10.1161/JAHA.118.008856.

[32] Sunil B, Ashraf AP. Dyslipidemia in pediatric type 2 diabetes mellitus. Curr Diabetes Rep 2020 Sep 9;20(10):53. https://doi.org/10.1007/s11892-020-01336-6.

[33] Ikramuddin S, Korner J, Lee WJ, Thomas AJ, Connett JE, Bantle JP, et al. Lifestyle Intervention and medical management with vs without roux-en-y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA 2018 Jan 16;319(3):266e78. https://doi.org/10.1001/jama.2017.20813.

[34] Holtrop J, Spiering W, Nathoe HM, De Borst GJ, Kappelle LJ, De Valk HW, et al. Apparent therapy-resistant hypertension as risk factor for the development of type 2 diabetes mellitus. J Hypertens 2020 Jan;38(1):45e51. https://doi.org/10.1097/HJH.0000000000002227.

[35] Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin resistance the hinge between hypertension and type 2 diabetes. High Blood Press Cardiovasc Prev 2020 Dec;27(6):515e26. https://doi.org/10.1007/s40292-020-00408-8.

[36] Almalki ZS, Albassam AA, Alhejji NS, Alotaibi BS, AlOqayli LA, Ahmed NJ. Prevalence, risk factors, and management of uncontrolled hypertension among patients with diabetes: A hospital-based cross-sectional study. Prim Care Diabetes 2020 Dec;14(6):610e5. https://doi.org/10.1016/j.pcd.2020.02.004.

[37] Wallace ML, Mentch L, Wheeler BJ, Tapia AL, Richards M, Zhou S, et al. Use and misuse of random forest variable importance metrics in medicine: demonstrations through incident stroke prediction. BMC Med Res Methodol 2023 Jun 19;23(1):144. https://doi.org/10.1186/s12874-023-01965-x.

[38] Lim A, Taufik MR, Tongkumchum P, Dureh N. Comparison of different supervised machine learning algorithms for the prediction of tuberculosis mortality. Adv Appl Stat 2020 May; 62(2):185e201. https://doi.org/10.17654/AS062020185.

[39] Telalovic Hasic J, Salkovic A. Breast cancer classification using support vector machines (SVM). In: International symposium on innovative and interdisciplinary applications of advanced technologies. Cham: Springer Nature Switzerland; 2023.

[40] Shahid S, Khurram H, Lim A, Shabbir MF, Billah B. Prediction of cyanotic and acyanotic congenital heart disease using machine learning models. World J Clin Pediatr 2024 Dec 9;13(4):98472. https://doi.org/10.5409/wjcp.v13.i4.98472.

[41] Adua E, Kolog EA, Afrifa-Yamoah E, Amankwah B, Obirikorang C, Anto EO, et al. Predictive model and feature importance for early detection of type II diabetes mellitus. Transl Med Commun 2021;6(17):1e15. https://doi.org/10.1186/s41231-021-00096-z.

Share

COinS