Abstract
Background: The mosquito perception index and habitat suitability score (MPI-HSS) can be a breakthrough for obtaining dengue transmission vulnerability information in households. Routinely observed predictor data for vector density can be used to obtain region susceptibility information. This study develops Household Vulnerability Information (HVI) and Area Susceptibility Information (ASI) models for the dissemination of Aedes vector surveillance information in the community.
Methods: This is a cross-sectional study. The HVI model used the MPI-HSS indicator with data collected from 368 households in Pontianak Municipality, Kalimantan Barat, Indonesia. The ASI model used secondary data on rainfall, humidity, population density, and larva-free rate (LFA) from 2018 to 2022. Confirmatory Factor Analysis (CFA) was used for validation the MPI-HSS indicators. Logistic regression was used to determine HVI and ASI models.
Results: CFA results confirm that the MPI-HSS indicator can be used to determine vector density with factor loadings ranging from 0.567to 0.890. The HVI model from the MPI-HSS indicator has a probability score of 80.6%. The ASI can be predicted from rainfall, humidity, population density, and LFA with a probability of 0.964. Validation of the ASI model against 2022 secondary data shows a 50% match.
Conclusion: The HVI model using the MPI-HSS instrument and ASI with the predictor variables can be used to disseminate information about Aedes vector surveillance. The potential dissemination of this information can be further developed using mobile apps that enable to independently input requested data for user convenience.
Keywords: HVI model, MPI-HSS, Dissemination vector surveillance
Recommended Citation
Hernawan A, Satoto T, Hadmoko D, Madyaningrum E.
Household Dengue Vulnerability Information Model for Disseminating Vector Surveillance.
J Health Res.
2024;
38(6):-.
DOI: https://doi.org/10.56808/2586-940X.1109
References
[1] Hung TM, Shepard DS, Bettis AA, Nguyen HA, McBride A, Clapham HE, et al. Productivity costs from a dengue episode in Asia: a systematic literature review. BMC Infect Dis. 2020 Jun 3;20(1):393. doi: 10.1186/s12879-020-05109-0.
[2] Nadjib M, Setiawan E, Putri S, Nealon J, Beucher S, Hadinegoro SR, et al. Economic burden of dengue in Indonesia. PLoS Negl Trop Dis. 2019 Jan 10;13(1):e0007038. doi: 10.1371/journal.pntd.0007038.
[3] Wijayanti SP, Sunaryo S, Suprihatin S, McFarlane M, Rainey SM, Dietrich I, et al. Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors. PLoS Negl Trop Dis. 2016 Mar 11;10(3):e0004500. doi: 10.1371/journal.pntd.0004500.
[4] Kosoltanapiwat N, Tongshoob J, Singkhaimuk P, Nitatsukprasert C, Davidson SA, Ponlawat A. Entomological Surveillance for Zika and Dengue Virus in Aedes Mosquitoes: Implications for Vector Control in Thailand. Pathogens. 2020 Jun 4;9(6):442. doi: 10.3390/pathogens9060442.
[5] Gessner BD, Wilder-Smith A. Estimating the public health importance of the CYD-tetravalent dengue vaccine: Vaccine preventable disease incidence and numbers needed to vaccinate. Vaccine. 2016 Apr 29;34(20):2397-401. doi: 10.1016/j.vaccine.2016.03.017.
[6] Cui L, Lee YH, Thein TL, Fang J, Pang J, Ooi EE, et al. Serum Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the Early Phase of Dengue Fever. PLoS Negl Trop Dis. 2016 Apr 7;10(4):e0004607. doi: 10.1371/journal.pntd.0004607.
[7] Achee NL, Gould F, Perkins TA, Reiner RC Jr, Morrison AC, Ritchie SA, et al. A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis. 2015 May 7;9(5):e0003655. doi: 10.1371/journal.pntd.0003655.
[8] Jing Q, Wang M. Dengue epidemiology. Global Health Journal. 2019; 3(2):37–45. https://doi.org/10.1016/j.glohj.2019.06.002
[9] Purnama S, Susanna D, Achmadi UF, Krianto T, Eryando T. Potential Development of Digital Environmental Surveillance System in Dengue Control: A Qualitative Study. Open Access Maced J Med Sci. 2021 Dec. 3;9(E):1443-5[cited 2024 Mar. 4]. Available from: https://oamjms.eu/index.php/mjms/article/view/7653
[10] Babu AN, Niehaus E, Shah S, Unnithan C, Ramkumar PS, Shah J, et al. Smartphone geospatial apps for dengue control, prevention, prediction, and education: MOSapp, DISapp, and the mosquito perception index (MPI). Environ Monit Assess. 2019 Jun 28;191(Suppl 2):393. doi: 10.1007/s10661-019-7425-0.
[11] Msellemu D, Gavana T, Ngonyani H, Mlacha YP, Chaki P, Moore SJ. Knowledge, attitudes and bite prevention practices and estimation of productivity of vector breeding sites using a Habitat Suitability Score (HSS) among households with confirmed dengue in the 2014 outbreak in Dar es Salaam, Tanzania. PLoS Negl Trop Dis. 2020 Jul 2;14(7):e0007278. doi: 10.1371/journal.pntd.0007278.
[12] Carrillo MA, Kroeger A, Cardenas Sanchez R, Diaz Monsalve S, Runge-Ranzinger S. The use of mobile phones for the prevention and control of arboviral diseases: a scoping review. BMC Public Health. 2021 Jan 9;21(1):110. doi: 10.1186/s12889-020-10126-4.
[13] Schultes OL, Morais MHF, Cunha MDCM, Sobral A, Caiaffa WT. Spatial analysis of dengue incidence and Aedes aegypti ovitrap surveillance in Belo Horizonte, Brazil. Trop Med Int Health. 2021 Feb;26(2):237-255. doi: 10.1111/tmi.13521.
[14] Francisco ME, Carvajal TM, Ryo M, Nukazawa K, Amalin DM, Watanabe K. Dengue disease dynamics are modulated by the combined influences of precipitation and landscape: A machine learning approach. Sci Total Environ. 2021 Oct 20;792:148406. doi: 10.1016/j.scitotenv.2021.148406.
[15] Withanage GP, Viswakula SD, Nilmini Silva Gunawardena YI, Hapugoda MD. A forecasting model for dengue incidence in the District of Gampaha, Sri Lanka. Parasit Vectors. 2018 Apr 24;11(1):262. doi: 10.1186/s13071-018-2828-2.
[16] Ngugi HN, Nyathi S, Krystosik A, Ndenga B, Mbakaya JO, Aswani P, et al. Risk factors for Aedes aegypti household pupal persistence in longitudinal entomological household surveys in urban and rural Kenya. Parasit Vectors. 2020 Oct 1;13(1):499. doi: 10.1186/s13071-020-04378-7.
[17] Bajwala VR, John D, Rajasekar D, Eapen A, Murhekar MV. Burden of Dengue with Related Entomological and Climatic Characteristics in Surat City, Gujarat, India, 2011-2016: An Analysis of Surveillance Data. Am J Trop Med Hyg. 2020 Jul;103(1):142-148. doi: 10.4269/ajtmh.19-0967.
[18] Tsang S, Royse CF, Terkawi AS. Guidelines for developing, translating, and validating a questionnaire in perioperative and pain medicine. Saudi J Anaesth. 2017 May;11(Suppl 1):S80-S89. doi: 10.4103/sja.SJA_203_17.
[19] Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psychol Bull. 1955 Jul;52(4):281-302. doi: 10.1037/h0040957.
[20] Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. NJ, Erlbaum : Hillsdale; 1988.
[21] Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16(3):297-334. https://doi.org/10.1007/BF02310555.
[22] Streiner DL. Starting at the beginning: an introduction to coefficient alpha and internal consistency. J Pers Assess. 2003 Feb;80(1):99-103. doi: 10.1207/S15327752JPA8001_18.
[23] Sarmento RP, Costa V. Confirmatory Factor Analysis: A case study. [updated: 2019 May 8; cited 2024 Mar. 4]. Available from: https://doi.org/10.48550/arXiv.1905.05598
[24] Sarmento RP, Costa V. Confirmatory Factor Analysis: A case study. Arxiv, Cornel University, Ithaca, New York [updated: 2019 May 8; cited 2024 Mar. 4]. Available from: https://doi. org/10.48550/arXiv.1905.05598.
[25] World Health Organization [WHO]. Communicating Risk in Public Health Emergencies: A WHO guideline for emergency risk communication (ERC) policy and practice. Geneva: WHO; 2017. [cited 2024 Mar 4] Available from: https://apps.who.int/iris/bitstream/handle/10665/259807/9789241550208-eng.pdf?sequence=2
[26] Ziebland S, Wyke S. Health and illness in a connected world: how might sharing experiences on the internet affect people's health? Milbank Q. 2012 Jun;90(2):219-49. doi: 10.1111/j.1468-0009.2012.00662.x.
[27] Triana D, Foresta Valentine Gunasari L, Helmiyetti H, Martini M, Suwondo A, Sofro MAU, et al. Endemicity of Dengue with Density Figure and Maya Index in Bengkulu City, Indonesia. Open Access Maced J Med Sci. 2021 Dec.13;9(E):1504-11. Available from: https://oamjms.eu/index.php/mjms/article/view/7718
[28] Henry S, Mendonça AFA. Past, Present, and Future Vulnerability to Dengue in Jamaica: A Spatial Analysis of Monthly Variations. Int J Environ Res Public Health. 2020 May 1;17(9):3156. doi: 10.3390/ijerph17093156.
[29] Zafar S, Shipin O, Paul RE, Rocklöv J, Haque U, Rahman MS, et al. Development and Comparison of Dengue Vulnerability Indices Using GIS-Based Multi-Criteria Decision Analysis in Lao PDR and Thailand. Int J Environ Res Public Health. 2021 Sep 6;18(17):9421. doi: 10.3390/ijerph18179421.
[30] Withanage GP, Gunawardana M, Viswakula SD, Samaraweera K, Gunawardena NS, Hapugoda MD. Multivariate spatio-temporal approach to identify vulnerable localities in dengue risk areas using Geographic Information System (GIS). Sci Rep. 2021 Feb 18;11(1):4080. doi: 10.1038/s41598-021-83204-1.
[31] Haque CE, Dhar-Chowdhury P, Hossain S, Walker D. Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh. Geographies. 2023;3(2):268-85.
[32] Udayanga L, Gunathilaka N, Iqbal MCM, Najim MMM, Pahalagedara K, Abeyewickreme W. Empirical optimization of risk thresholds for dengue: an approach towards entomological management of Aedes mosquitoes based on larval indices in the Kandy District of Sri Lanka. Parasit Vectors. 2018 Jun 28;11(1):368. doi: 10.1186/s13071-018-2961-y.
[33] Haddawy P, Wettayakorn P, Nonthaleerak B, et al. Large scale detailed mapping of dengue vector breeding sites using street view images. PLoS Negl Trop Dis. 2019;13(7):1–27. doi: 10.1371/journal.pntd.0007555.
[34] Jesha MM, Sebastian MN, Haveri SP, Ishaac Shabeer M, Manu AY. Mosquito Density in Urban Kerala: a Study To Calculate Larval Indices in Municipal Area of Perinthalmanna. Indian J Forensic Community Med. 2015;2(1):7–12.
[35] Lwin MO, Vijaykumar S, Foo S, Fernando ON, Lim G, Panchapakesan C, Wimalaratne P. Social media-based civic engagement solutions for dengue prevention in Sri Lanka: results of receptivity assessment. Health Educ Res. 2016 Feb;31(1):1-11. doi: 10.1093/her/cyv065.
[36] Reinhold JM, Lazzari CR, Lahondère C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects. 2018 Nov 6;9(4):158. doi: 10.3390/insects9040158.