Abstract
Background: Leber's hereditary optic neuropathy (LHON) is a prevalent mitochondrial disease that is predominantly caused by mitochondrial (mtDNA) mutations. However, not all siblings with identical LHON mutations develop visual impairment, suggesting the influence of nuclear genetic variants. This study explores the role of these variants in LHON expression among siblings and relatives with the same maternal LHON mutations.
Methods: A family with a homoplasmic G11778A mutation displaying significant LHON penetrance (50% in female carriers) was examined. Exome sequencing was performed on four members (two affected, two unaffected). Detected variations were predicted using a Variant Effect Predictor (VEP) with a dbNSFP (database for nonsynonymous single nucleotide polymorphisms' functional predictions) plugin. Candidate variants were chosen based on their scores and LHON-related gene variations. Sanger sequencing was used for validation of 15 family members.
Results: Exome analysis identified nine potential variations across eight genes. However, only the MSTO1 c.692 693delCC mutation showed a significant linkage to LHON expression in both additive (adj. p-value = 0.04) and dominant models (adj. p-value = 0.0112). This rare variant, located at the cleavage and polyadenylation site of the MSTO1 gene, could disrupt transcriptional termination, and thus alter MSTO1 gene expression.
Conclusions: Given the role of the MSTO1 gene in controlling mitochondrial morphology, the MSTO1 c.692 693delCC mutation might instigate mitochondrial dysfunction. Thus, the MSTO1 gene is potentially a novel nuclear modifier for LHON. These findings pave the way for further research into the underlying mechanisms of LHON.
Keywords: LHON, G11778 AmtDNA, MSTO1, Nuclear modifier
Recommended Citation
Nakhonsri V, Kaewsutthi S, Suktitipat B,
et al.
Exome Sequencing Reveals a Rare Autosomal Dominant Variant in MSTO1 Gene as a Novel Leber’s Hereditary Optic Neuropathy (LHON) Modifier in a Thai Family with High Penetrance of G11778A Mutation.
J Health Res.
2024;
38(3):-.
DOI: https://doi.org/10.56808/2586-940X.1079
References
[1] Leber T. Ueber hereditäre und congenital-angelegte Sehnervenleiden. Graefe's Arhiv für Ophthalmologie. 1871;17: 249–291 [cited 2024 Jun]. Available from: https://doi.org/10.1007/BF01694557
[2] Newman NJ. Leber's hereditary optic neuropathy. New genetic considerations. Arch Neurol. 1993 May;50(5):540-8. doi: 10.1001/archneur.1993.00540050082021.
[3] Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science. 1988 Dec 9;242(4884):1427-30. doi: 10.1126/science.3201231.
[4] Mackey D, Howell N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am J Hum Genet. 1992 Dec;51(6):1218-28.
[5] Mashima Y, Yamada K, Wakakura M, Kigasawa K, Kudoh J, Shimizu N, et al. Spectrum of pathogenic mitochondrial DNA mutations and clinical features in Japanese families with Leber's hereditary optic neuropathy. Curr Eye Res. 1998 Apr;17(4):403-8. doi: 10.1080/02713689808951221.
[6] Sudoyo H, Suryadi H, Lertrit P, Pramoonjago P, Lyrawati D, Marzuki S. Asian-specific mtDNA backgrounds associated with the primary G11778A mutation of Leber's hereditary optic neuropathy. J Hum Genet. 2002;47(11):594-604. doi: 10.1007/s100380200091.
[7] Yen MY, Wang AG, Chang WL, Hsu WM, Liu JH, Wei YH. Leber's hereditary optic neuropathy--the spectrum of mitochondrial DNA mutations in Chinese patients. Jpn J Ophthalmol. 2002;46(1):45-51. doi:10.1016/s0021-5155(01)00460-9
[8] Harding AE, Sweeney MG, Govan GG, Riordan-Eva P. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet. 1995;57(1):77-86.
[9] Phasukkijwatana N, Chuenkongkaew WL, Suphavilai R, Suktitipat B, Pingsuthiwong S, Ruangvaravate N, et al. The unique characteristics of Thai Leber hereditary optic neuropathy: analysis of 30 G11778A pedigrees. J Hum Genet. 2006;51(4):298-304. doi: 10.1007/s10038-006-0361-1.
[10] Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006 Jun 1;2006(1):pdb.prot4455. doi: 10.1101/pdb.prot4455.
[11] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324.
[12] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010 Sep;20(9):1297-303. doi: 10.1101/gr.107524.110.
[13] Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi: 10.1002/0471250953.bi1110s43.
[14] McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016 Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4.
[15] Liu X, Jian X, Boerwinkle E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011 Aug;32(8):894-9. doi: 10.1002/humu.21517.
[16] Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 2013 Sep;34(9):E2393-402. doi: 10.1002/humu.22376.
[17] R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2020. [cited 2024 Jun]. Available from: https://www.R-project.org/.
[18] Hill JT, Demarest BL, Bisgrove BW, Su YC, Smith M, Yost HJ. Poly peak parser: Method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. Dev Dyn. 2014 Dec;243(12):1632-6. doi: 10.1002/dvdy.24183.
[19] Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016 Jan;11(1):1-9. doi: 10.1038/nprot.2015.123.
[20] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010 Apr;7(4):248-9. doi: 10.1038/nmeth0410-248.
[21] Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013 Jan;34(1):57-65. doi: 10.1002/humu.22225.
[22] Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009 Sep;19(9):1553-61. doi: 10.1101/gr.092619.109.
[23] Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014 Apr;11(4):361-2. doi: 10.1038/nmeth.2890.
[24] Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015 Aug 15;31(16):2745-7. doi: 10.1093/bioinformatics/btv195.
[25] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000 May;25(1):25-9. doi: 10.1038/75556.
[26] The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338. doi: 10.1093/nar/gky1055.
[27] Rubinstein WS, Maglott DR, Lee JM, Kattman BL, Malheiro AJ, Ovetsky M, et al. The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency. Nucleic Acids Res. 2013 Jan;41(Database issue):D925-35. doi: 10.1093/nar/gks1173.
[28] Wagner AH, Anand VN, Wang WH, Chatterton JE, Sun D, Shepard AR, et al. Exon-level expression profiling of ocular tissues. Exp Eye Res. 2013 Jun;111:105-11. doi: 10.1016/j.exer.2013.03.004.
[29] Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787-795. doi:10.1038/nature05292
[30] Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther. 2005 Jun;106(3):357-87. doi: 10.1016/j.pharmthera.2005.01.001.31
[31] Dagda RK, Das Banerjee T. Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Rev Neurosci. 2015;26(3):359-70. doi: 10.1515/revneuro-2014-0085.
[32] Fu J, Yu HM, Chiu SY, Mirando AJ, Maruyama EO, Cheng JG, et al. Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet. 2014 Oct 9;10(10):e1004579. doi: 10.1371/journal.pgen.1004579.33
[33] Plutino M, Chaussenot A, Rouzier C, Ait-El-Mkadem S, Fragaki K, Paquis-Flucklinger V, et al. Targeted next generation sequencing with an extended gene panel does not impact variant detection in mitochondrial diseases. BMC Med Genet. 2018 Apr 7;19(1):57. doi: 10.1186/s12881-018-0568-y.
[34] Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol. 2020 Jun;21(6):307-326. doi: 10.1038/s41580-020-0214-3.
[35] Lee KY, Fu H, Aladjem MI, Myung K. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J Cell Biol. 2013;200(1):31-44. doi:10.1083/jcb.201206084
[36] Schwartz JL, Baumann WT, Tyson JJ, Xuan J, Wang Y, Wärri A, Shajahan AN. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res. 2012 Mar 15;72(6):1321-31. doi: 10.1158/0008-5472.CAN-11-3213.
[37] Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018 Jan 4;46(D1):D1062-D1067. doi: 10.1093/nar/gkx1153.
[38] López-Gallardo E, Emperador S, Hernández-Ainsa C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Food derived respiratory complex I inhibitors modify the effect of Leber hereditary optic neuropathy mutations. Food Chem Toxicol. 2018 Oct;120:89-97. doi: 10.1016/j.fct.2018.07.014.
[39] Li A, Lane WS, Johnson LV, Chader GJ, Tombran-Tink J. Neuron-specific enolase: a neuronal survival factor in the retinal extracellular matrix? J Neurosci. 1995 Jan;15(1 Pt 1):385-93. doi: 10.1523/JNEUROSCI.15-01-00385.1995.
[40] Nasca A, Scotton C, Zaharieva I, Neri M, Selvatici R, Magnusson OT, et al. Recessive mutations in MSTO1 cause mitochondrial dynamics impairment, leading to myopathy and ataxia. Hum Mutat. 2017 Aug;38(8):970-977. doi: 10.1002/humu.23262.41
[41] Palmer CS, Osellame LD, Stojanovski D, Ryan MT. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal. 2011 Oct;23(10):1534-45. doi: 10.1016/j.cellsig.2011.05.021.
[42] Legros F, Malka F, Frachon P, Lombès A, Rojo M. Organization and dynamics of human mitochondrial DNA. J Cell Sci. 2004 Jun 1;117(Pt 13):2653-62. doi: 10.1242/jcs.01134.
[43] Cagalinec M, Liiv M, Hodurova Z, Hickey MA, Vaarmann A, Mandel M, et al. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome. PLoS Biol. 2016 Jul 19;14(7):e1002511. doi: 10.1371/journal.pbio.1002511.
[44] Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML, et al. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain. 2014 Feb;137(Pt 2):335-53. doi: 10.1093/brain/awt343.
[45] Kroeger H, Chiang WC, Felden J, Nguyen A, Lin JH. ER stress and unfolded protein response in ocular health and disease. FEBS J. 2019 Jan;286(2):399-412. doi: 10.1111/febs.14522.
[46] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological).1995; 57(1): 289–300.
[47] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7.
[48] Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 1997 Jul 1;25(13):2547-61. doi: 10.1093/nar/25.13.2547.
[49] Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science. 2008 Jun 20;320(5883):1643-7. doi: 10.1126/science.
[50] Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, et al. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep. 2012 Mar 29;1(3):277-89. doi: 10.1016/j.celrep.2012.01.001. Erratum in: Cell Rep. 2013 Mar 28;3(3):969.
[51] Ye C, Zhou Q, Hong Y, Li QQ. Role of alternative polyadenylation dynamics in acute myeloid leukaemia at single-cell resolution. RNA Biol. 2019 Jun;16(6):785-797. doi: 10.1080/15476286.2019.1586139.
[52] Gehring NH, Frede U, Neu-Yilik G, Hundsdoerfer P, Vetter B, Hentze MW, et al. Increased efficiency of mRNA 3' end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat Genet. 2001 Aug;28(4):389-92. doi: 10.1038/ng578.
[53] Kimura M, Okano Y. Human Misato regulates mitochondrial distribution and morphology. Exp Cell Res. 2007 Apr 15;313(7):1393-404. doi: 10.1016/j.yexcr.2007.02.004.
[54] Li K, Jin R, Wu X. Whole-exome sequencing identifies rare compound heterozygous mutations in the MSTO1 gene associated with cerebellar ataxia and myopathy. Eur J Med Genet. 2020 Jan;63(1):103623. doi: 10.1016/j.ejmg.2019.01.013.
[55] Nasca A, Scotton C, Zaharieva I, Neri M, Selvatici R, Magnusson OT, et al. Recessive mutations in MSTO1 cause mitochondrial dynamics impairment, leading to myopathy and ataxia. Hum Mutat. 2017 Aug;38(8):970-977. doi: 10.1002/humu.23262.
[56] Gal A, Balicza P, Weaver D, Naghdi S, Joseph SK, Várnai P, et al. MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans. EMBO Mol Med. 2017 Jul;9(7):967-984. doi: 10.15252/emmm.201607058.
[57] Donkervoort S, Sabouny R, Yun P, Gauquelin L, Chao KR, Hu Y, et al. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol. 2019 Dec;138(6):1013-1031. doi: 10.1007/s00401-019-02059-z.
[58] Cai Q, Jeong YY. Mitophagy in Alzheimer's Disease and Other Age-Related Neurodegenerative Diseases. Cells. 2020 Jan 8;9(1):150. doi: 10.3390/cells9010150.
[59] Sharma LK, Tiwari M, Rai NK, Bai Y. Corrigendum to: Mitophagy activation repairs Leber's hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival. Hum Mol Genet. 2020 Jan 15;29(2):352. doi: 10.1093/hmg/ddz224.
[60] Delettre C, Lenaers G, Pelloquin L, Belenguer P, Hamel CP. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab. 2002 Feb;75(2):97-107. doi: 10.1006/mgme.2001.3278.
[61] Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003 Mar 7;278(10):7743-6. doi: 10.1074/jbc.C200677200.
[62] Züchner S, De Jonghe P, Jordanova A, Claeys KG, Guergueltcheva V, Cherninkova S, et al. Timmerman V, Shy M, Vance JM. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol. 2006 Feb;59(2):276-81. doi: 10.1002/ana.20797.
[63] Phasukkijwatana N, Kunhapan B, Stankovich J, Chuenkongkaew WL, Thomson R, Thornton T, et al. Genome-wide linkage scan and association study of PARL to the expression of LHON families in Thailand. Hum Genet. 2010 Jul;128(1):39-49. doi: 10.1007/s00439-010-0821-8.