Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
Pruning strategy on YOLOv3 for real-time object detection
Year (A.D.)
2019
Document Type
Thesis
First Advisor
พีรพล เวทีกูล
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)
Degree Name
วิทยาศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
วิทยาศาสตร์คอมพิวเตอร์
DOI
10.58837/CHULA.THE.2019.1133
Abstract
ในงานตรวจจับวัตถุ แบบจำลอง YOLOv3 จัดว่าเป็นแบบจำลองที่มีประสิทธิภาพดีในด้านความแม่นยำ แต่ทว่าด้วยจำนวนตัวแปรในแบบจำลองที่มีมากกว่าสิบล้านตัวแปร ส่งผลให้ตัวแบบจำลองไม่เหมาะสมที่จะนำไปใช้งานบนกล้องหรืออุปกรณ์ขนาดเล็ก โดยงานวิจัยชิ้นนี้นำเสนอกลไกการบีบอัดแบบจำลองที่ออกแบบมาโดยเฉพาะสำหรับแบบจำลอง YOLOv3 เพื่อตัดตัวกรองที่ไม่จำเป็นออกจากตัวแบบจำลอง แต่เนื่องจากแบบจำลอง YOLOv3 นั้นประกอบไปด้วยองค์ประกอบ 2 ส่วน คือ โครงข่ายกระดูกสันหลัง และโครงข่ายพีระมิดฟีเจอร์ งานวิจัยชิ้นนี้จึงนำเสนอกลยุทธ์ 3 อย่างดังต่อไปนี้ 1) การตัดแบบแยกส่วน 2) การจำกัดการตัด และ 3) เกณฑ์การหยุด หลังจากนั้นจึงนำกลยุทธ์ทั้ง 3 อย่างมารวมกันเป็นกลไกการตัดแบบทนทานเพื่อตัดแบบจำลองแบบแยกส่วนกัน ด้วยวิธีการนี้ สามารถช่วยป้องกันการตัดส่วนใดส่วนหนึ่งของแบบจำลองมากเกินไป ส่งผลให้แบบจำลองมีเสถียรภาพมากขึ้น
Other Abstract (Other language abstract of ETD)
For object detection, YOLOv3 has shown promising accuracy. Since the number of parameters in this network can be more than ten million parameters, it cannot be fit into a commodity camera or small devices. In this research, we propose a compression mechanism designed specifically for YOLOv3’s network by removing unnecessary filters. Since YOLOv3 composes of two network components: backbone and pyramid networks, we propose the following techniques, (1) separated pruning, (2) minimum filter constraint, and (3) stopping criteria. Then, we combined these three mechanisms as a robust pruning mechanism to prune filters of each network separately. This can help to avoid over-pruning the network in some parts of the model making our model more robust
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
กฤตยานวัช, ณัฐนนท์, "กลยุทธ์การตัดบนโยโลวีสามสำหรับการตรวจจับวัตถุแบบทันกาล" (2019). Chulalongkorn University Theses and Dissertations (Chula ETD). 9509.
https://digital.car.chula.ac.th/chulaetd/9509