Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

การพัฒนาตัวแบบการตรวจจับการแสดงสีหน้าสำหรับผู้ป่วยโรคหลอดเลือดสมอง

Year (A.D.)

2019

Document Type

Thesis

First Advisor

Pattarasinee Bhattarakosol

Faculty/College

Faculty of Science (คณะวิทยาศาสตร์)

Department (if any)

Department of Mathematics and Computer Science (ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์)

Degree Name

Doctor of Philosophy

Degree Level

Doctoral Degree

Degree Discipline

Mathematics

DOI

10.58837/CHULA.THE.2019.342

Abstract

A stroke patient should be cared and treated closely since the patient cannot speak, communicate, and move the body when needed. In addition, the number of stroke patients is increasing in Thailand and around the world. Unfortunately, the number of medical staffs does not vary by the number of stroke patient. Thus, the aim of this research is to develop a facial expression detection model for stroke patients during their treatments. This research proposes the facial expression detection model for stroke patients from facial features, such as Interpalpebral Fissure (IPF), Palpebral Fissure Length (PFL), Palpebral Fissure Region (PFR), Inner Brow Raisers (IBR), Brow Lower (BL), Inner and Outer Lid Raiser (LR), and Lip Part (LP). These features are applied to develop the facial expression detection model using the decision tree algorithm. Furthermore, there are two factors that can determine the facial expression detection, which are gender and age. From the experiment, the proposed the facial expression detection model can identify normal situations and abnormal situations for stroke patients with 95% accuracy; the value of precision is 91% and the value of recall is 100%. This model can be assisted for raising patient’s safety.

Other Abstract (Other language abstract of ETD)

ผู้ป่วยโรคหลอดเลือดสมองควรได้รับการดูแลและปฏิบัติอย่างใกล้ชิด เนื่องจากผู้ป่วยไม่สามารถพูด สื่อสาร และเคลื่อนไหวร่างกายได้เมื่อต้องการ นอกจากนี้แล้ว จำนวนผู้ป่วยหลอดเลือดสมองในประเทศไทยและทั่วโลกมีจำนวนเพิ่มขึ้นอย่างต่อเนื่อง และเป็นที่น่าเสียดายที่จำนวนบุคลากรทางการแพทย์ไม่ได้แปรผันตามจำนวนผู้ป่วยที่มีอยู่ ดังนั้น งานวิจัยนี้มีเป้าหมายที่จะพัฒนาตัวแบบการตรวจจับการแสดงสีหน้าสำหรับผู้ป่วยโรคหลอดเลือดสมอง เพื่อการค้นหาการแสดงสีหน้าของผู้ป่วยโรคหลอดเลือดสมองในระหว่างรับการรักษา งานวิจัยนี้จึงได้นำเสนอตัวแบบการตรวจจับการแสดงสีหน้าจากคุณลักษณะทางใบหน้า เช่น ขอบตาช่วงกลาง ความยาวตา พื้นที่ตา การยกขึ้นของหัวคิ้วด้านใน ขอบตาด้านในและขอบตาด้านนอก บริเวณริมฝีปาก คุณลักษณะเหล่านี้จะถูกนำมาประยุกต์เพื่อใช้การพัฒนาตัวแบบการตรวจจับการแสดงสีหน้าด้วยการใช้อัลกอริทึมต้นไม้ในการตัดสินใจ นอกจากนี้ ยังมีปัจจัยสองปัจจัยที่สามารถใช้เพื่อกำหนดการตรวจจับการแสดงสีหน้า คือ เพศและอายุ จากการทดลอง โมเดลที่นำเสนอเพื่อการตรวจจับการแสดงสีหน้าสามารถระบุสถานะใบหน้าปกติและไม่ปกติของผู้ป่วยโรคหลอดเลือดสมองได้ด้วยความถูกต้อง 95% ค่าความเที่ยงตรงเท่ากับ 91% และค่าความแม่นยำที่สนใจในส่วนของความเป็นจริงมีค่าเท่ากับ 100% ดังนั้นโมเดลนี้สามารถช่วยผู้ป่วยให้มีความปลอดภัยได้มากขึ้น

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.