Chulalongkorn University Theses and Dissertations (Chula ETD)

การแปรสภาพขยะพลาสติกจากหลุมฝังกลบโดยกระบวนการไพโรไลซิสและแกซิฟิเคชัน

Other Title (Parallel Title in Other Language of ETD)

Conversion of plastic wastes from landfill using pyrolysis and gasification processes

Year (A.D.)

2010

Document Type

Thesis

First Advisor

วิบูลย์ ศรีเจริญชัยกุล

Second Advisor

ดวงเดือน อาจองค์

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมสิ่งแวดล้อม

DOI

10.58837/CHULA.THE.2010.1594

Abstract

งานวิจัยนี้เป็นการศึกษาการแปรสภาพขยะพลาสติกจากหลุมฝังกลบโดยผ่านกระบวนการไพโรไลซิสและแกซิฟิเคชัน ทำการศึกษาที่อุณหภูมิ 700-900 °C ที่อัตราสมมูลเท่ากับ 0.4 – 0.6 โดยไม่ใช้ตัวเร่งปฎิกิริยาเปรียบเทียบกับการแกซิฟิเคชันที่ใช้ตัวเร่งปฏิกิริยา Ni-Mg-La/Al₂O₃ แก๊สผลิตภัณฑ์หลักที่ได้คือแก๊สไฮโดรคาร์บอน การไพโรไลซิสและแกซิฟิเคชันขยะพลาสติกโดยไม่ใช้ตัวเร่งปฏิกิริยา พบว่าปริมาณแก๊สไฮโดรเจนและคาร์บอน มอนอกไซด์ที่ได้ต่ำ ค่าความร้อนที่ได้อยู่ในช่วง 6.52–9.39 MJ/m³ค่าความร้อนสูงสุดเกิดที่อุณหภูมิ 800 °C อัตราสมมูลเท่ากับ 0.4 ซึ่งมีความเหมาะสมสำหรับนำไปใช้เป็นแก๊สเชื้อเพลิงต่อไป และพบว่าค่าประสิทธิภาพเชิงความร้อนของแก๊สผลิตภัณฑ์ที่อุณหภูมิ 700 °C อัตราสมมูลเท่ากับ 0.4 มีค่าสูงสุดเท่ากับร้อยละ 86.42 ซึ่งการแกซิฟิเคชันที่อุณหภูมิต่ำคือ 700 °C จะประหยัดพลังงานมากกว่าที่อุณหภูมิสูง นอกจากนี้ยังพบว่าระยะเวลากักของแก๊สเท่ากับ 1.3 วินาทีเป็นสภาวะที่เหมาะสมในการผลิตแก๊สไฮโดรเจนและคาร์บอนมอนอกไซด์ ในขณะที่การใช้ตัวเร่งปฏิกิริยา Ni-Mg-La/Al₂O₃ ในการแกซิฟิเคชันพบว่าปริมาณแก๊สผลิตภัณฑ์มีค่าสูงอยู่ในช่วง 87.23–94.29% ผลิตภัณฑ์ของแข็งและของเหลวมีปริมาณลดลง ปริมาณแก๊สไฮโดรเจนและคาร์บอนมอนอกไซด์มีค่าสูงขึ้นและยังพบว่าค่าความร้อนมีค่าสูงขึ้นเท่ากับ 15.76–19.26 MJ/m³ มีค่าสูงสุดที่อุณหภูมิ 900 °C จากผลการทดลองชี้ให้เห็นว่าการใช้ตัวเร่งปฏิกิริยามีผลต่อปริมาณแก๊สผลิตภัณฑ์โดยรวม การผลิตแก๊สไฮโดรเจนและคาร์บอนมอนอกไซด์แต่ไม่มีผลต่อการลดลงของปริมาณแก๊สไฮโดรคาร์บอน ดังนั้นการแปรสภาพทางเคมีด้วยความร้อนของขยะพลาสติกที่ผ่านการฝังกลบโดยกระบวนการแกซิฟิเคชันจึงเป็นทางเลือกที่เหมาะสมอีกทางหนึ่งในการจัดการของเสีย

Other Abstract (Other language abstract of ETD)

Pyrolysis and gasification processes were utilized in order to study the feasibility on production of value added fuels from landfilled plastic wastes. Plastic wastes were converted in a gasifier at 700–900 °C. Equivalence ratio (ER) was varied from 0.4–0.6 with or without addition of Ni-Mg-La/Al₂O₃ catalyst. Methane was found to be the major gaseous products. The pyrolysis and gasification of plastic wastes without Ni-Mg-La/Al₂O₃ catalyst resulted in relatively low H₂ and CO with energy content ranged from 6.52–9.39 MJ/m³. The highest LHV obtained from 800°C and equivalence ratio of 0.4 is suitable for further usage as quality fuel gas. The maximum cold gas efficiency of 86.42% occurred at 700°C and equivalence ratios as 0.4, it would be more economical to gasify this plastic waste at lower temperature of 700°C. The residence time is one of important operating variables in the plastics gasification process. There is significant effect observed in amount or composition of gaseous products which a residence time of 1.3 s was found to be optimum in product gas with amounts of H₂ and CO. The presence of the Ni-Mg-La/Al₂O₃ catalyst significantly enhanced H₂ and CO production as well as increased gas energy content to 15.76–19.26 MJ/m³. Higher temperature resulted in more H₂ and CO and product gas yield which ranged from 87.23–94.29%. The maximum gas yield was achieved when Ni-Mg-La/Al₂O₃ catalyst was used at 900°C; it had significant effects on product gas yield, H₂ and CO production, calorific value and cold gas efficiency and no significant effect on reduction of hydrocarbon production. Thus, thermochemical treatment of landfilled plastic wastes using gasification is a very attractive alternative for sustainable waste management

Share

COinS