Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

แผนการจับวัตถุที่เสถียรและมีประสิทธิภาพ โดยใช้บริเวณสัมผัสอิสระและการกักขังวัตถุ

Year (A.D.)

2017

Document Type

Thesis

First Advisor

Attawith Sudsang

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name

Doctor of Philosophy

Degree Level

Doctoral Degree

Degree Discipline

Computer Engineering

DOI

10.58837/CHULA.THE.2017.168

Abstract

A conventional way to find a proper grasp to grab and hold any object is to measure its stability which usually is based on physical constraint called force-closure. This execution works well from the theoretical point of view but often fails on an actual robot due to many reasons such as intrinsic errors in robot's system and a disparity between real and simulated physics. Several research works introduced methods to alleviate those issues and increase the success rate of grasping for a real robot. Caging and Independent Contact Region are ones of them. In this work, we investigate a method to find a grasp that is more stable and robust by combining those two techniques which result in a learning-based approach that utilizes an artificial neural network to find a proper grasp based on those techniques and some heuristic methods.

Other Abstract (Other language abstract of ETD)

งานวิจัยส่วนใหญ่คำนวณหาท่าจับที่เหมาะสำหรับการจับวัตถุใดๆ ด้วยการวัดความมั่นคงของท่าจับนั้น ซึ่งมักจะใช้คุณสมบัติทางฟิสิกส์ที่เรียกว่า คุณสมบัติแรงแบบปิด (force-closure) วิธีการหาท่าจับวัตถุแบบนี้มักจะทำงานได้ดีในทางทฤษฎี แต่มักเกิดข้อผิดพลาดเวลาใช้งานบนหุ่นยนต์จริง ซึ่งเกิดอาจเกิดจากหลายปัจจัยประกอบกัน เช่น สัญญาณรบกวนในระบบเซนเซอร์ ความไม่แม่นยำของตัวหุ่นยนต์ และความคลาดเคลื่อนระหว่างสิ่งที่เกิดขึ้นจริงและสิ่งที่คำนวณได้จากทฤษฎีทางด้านฟิสิกส์ นักวิจัยจึงนำเสนอวิธีการบรรเทาผลกระทบที่เกิดจากปัจจัยเหล่านี้ เพื่อให้ท่าจับที่คำนวณได้มีโอกาสสำเร็จมากขึ้น หนึ่งในนั้นก็คือ การกักขังวัตถุ (caging) และบริเวณสัมผัสอิสระ (independent contact regions) งานวิจัยนี้จึงศึกษาถึงความเป็นไปได้ที่จะนำเทคนิคทั้งสองมารวมกัน เพื่อหาท่าจับที่ดีขึ้นกว่าเดิม ผลการวิจัยที่ได้คือวิธีการเรียนรู้หาท่าจับวัตถุด้วยเครือข่ายประสาทเทียม (artificial neural network) ให้รู้จำท่าจับที่เหมาะสำหรับการจับวัตถุใดๆ โดยใช้เทคนิคที่เราสนใจทั้งสองและวิธีการแบบศึกษาสำนึก

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.