Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Spatio-temporal PM2.5 forecasting using deep learning approach

Year (A.D.)


Document Type


First Advisor

พีรพล เวทีกูล


Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name


Degree Level


Degree Discipline





PM2.5 เป็นอนุภาคขนาดเล็กที่มีส่วนทำให้เกิดปัญหามลพิษทางอากาศในประเทศไทย การหายใจนำฝุ่น PM2.5 เข้าไปสามารถทำให้เกิดปัญหาสุขภาพตามมาได้ เช่น โรคทางเดินหายใจและโรคหัวใจเสื่อมสภาพ รวมถึงเพิ่มความเสี่ยงต่อการเสียชีวิตก่อนวัยอันควร งานวิจัยนี้เสนอแบบจำลองที่ใช้การเรียนรู้เชิงลึกเพื่อทำนายค่าฝุ่น PM2.5 ในระดับประเทศซึ่งเป็นการทำนายทั้งในเชิงพื้นที่และเวลา โดยแบบจำลองที่นำเสนอมีชื่อว่า SimVP-CFLL-ML มีพื้นฐานมาจากแบบจำลองการทำนายวิดีโอที่เรียกว่า "SimVP" และเพื่อเพิ่มประสิทธิภาพในการทำนายค่าฝุ่น PM2.5 ในช่วงที่มีค่าฝุ่นสูง SimVP ได้มีการพัฒนาเพิ่มเติมสองประการ คือ 1.Cross-Feature Learning Layer (CFLL) ซึ่งใช้ 1x1 convolution layer เพื่อเรียนรู้ความสัมพันธ์ของคุณลักษณะและ 2.Masking Layer (ML) ซึ่งใช้สำหรับคำนวณค่าลอสเฉพาะส่วนที่สำคัญที่ต้องการทำนาย โดยในที่นี้คือส่วนที่เป็นประเทศไทย การทดลองดำเนินการโดยใช้ข้อมูลที่เก็บรวบรวมจากกรมควบคุมมลพิษของประเทศไทยและโครงการ Sensor For All (SFA) ผลการทดลองแสดงให้เห็นว่าแบบจำลองของเราเหนือกว่าแบบจำลองพื้นฐานทั้งหมด โดยเฉพาะในกรณีที่ต้องการจำแนกช่วงที่ค่าฝุ่นมีค่าสูง แบบจำลองของเราได้ผลลัพธ์ค่าคะแนน F1 สูงกว่าแบบจำลองพื้นฐานที่ดีที่สุดถึง 3.51%

Other Abstract (Other language abstract of ETD)

PM2.5, a form of fine particulate matter, contributes to the air pollution in Thailand throughout the year. Exposure to PM2.5 can lead to immediate health issues, such as respiratory and cardiovascular diseases, as well as an increased risk of premature death. This study introduces a spatio-temporal model, which employs a deep learning approach resembling images, to predict the concentration of PM2.5 at a national level. Our model, named SimVP-CFLL-ML, is built upon a video prediction model called "SimVP." To improve its performance in predicting high PM2.5 concentration, SimVP incorporates two significant enhancements: a cross-feature learning layer (CFLL), which employs a 1x1 convolution layer to understand feature correlations, and a masking layer (ML), which calculates the loss in specific locations. We conducted experiments using data gathered from the Pollution Control Department (PCD) of Thailand and the Sensor for All (SFA). The results demonstrate that our model surpasses all comparison models. Specifically, our model achieves a 3.51% higher F1 performance than the best baseline model when classifying high PM2.5 concentration levels.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.