Chulalongkorn University Theses and Dissertations (Chula ETD)

ระบบตรวจพบและวินิจฉัยความผิดพร่องหลายแห่งพร้อมกันในกระบวนการโดยใช้ข่ายงานประสาทแบบลำดับชั้นหลายขั้นตอน

Other Title (Parallel Title in Other Language of ETD)

Process fault detection and diagnosis of multiple simultaneous faults using multi-stage hierarchical artificial neural network

Year (A.D.)

1999

Document Type

Thesis

First Advisor

วราภรณ์ เชาว์วิศิษฐ

Faculty/College

Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Degree Name

วิศวกรรมศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

วิศวกรรมไฟฟ้า

DOI

10.58837/CHULA.THE.1999.809

Abstract

งานวิทยานิพนธ์นี้ได้ศึกษาการตรวจพบและวินิจฉัยความผิดพร่องหลายแห่งพร้อมกันในกระบวน การโดยใช้ข่ายงานประสาทแบบลำดับชั้นหลายชั้นตอน ( Multi-Stage Hierarchical Artificial Neural Network, MSHANN ) เพื่อให้ตรวจพบความผิดพร่องได้ตั้งแต่ในช่วงภาวะชั่วครู่ของระบบ และเพื่อเพิ่ม ประสิทธิภาพในการสอนข่ายงานประสาท ทำให้ลามารถวินิจฉัยความผิดพร่องที่เกิดขึ้นหลายแห่งพร้อมกัน ได้ดียิ่งขึ้น ตัวอย่างที่ทำการศึกษาได้แก่ ระบบถังปฏิกรณ์เคมีชนิดต่อเนื่อง และระบบหอกลั่นแยกสารผสม สองชนิด ซึ่งทั้งสองระบบนี้มีช่วงเวลาเข้าที่ยาวนาน ผลการจำลองระบบด้วยคอมพิวเตอร์ แสดงให้เห็นว่า MSHANN สามารถตรวจพบและวินิจฉัยความผิดพร่องเดี่ยวและความผิดพร่องสองแห่งพร้อมกันได้ถูกต้อง ในขณะที่ระบบยังคงอยู่ในภาวะชั่วครู่ ในระบบหอกลั่นแยกสารผสมสองชนิด ยังได้มีการพัฒนาข่ายงานให้เพิ่มความสามารถที่นอกเหนือ ไปจากการตรวจพบและวินิจฉัยความผิดพร่อง โดยสามารถบอกระดับขนาดต่าง ๆ กันของความผิดพร่อง เดี่ยวและปรับแก้ความผิดพร่องเดี่ยวที่เกิดขึ้นในระบบได้ตั้งแต่ในช่วงภาวะชั่วครู่ จากผลการจำลองระบบ ด้วยคอมพิวเตอร์แสดงให้เห็นว่า MSHANN สามารถบอกระดับขนาดของความผิดพร่องเดี่ยวที่พิจารณา ได้ถูกต้องทุกแห่งตั้งแต่ในช่วงภาวะชั่วครู่ของระบบ และสามารถปรับแก้ความผิดพร่องเดี่ยวบางแห่งที่เกิด ขึ้นได้

Other Abstract (Other language abstract of ETD)

This thesis presents application of Multi-Stage Hierarchical Artificial Neural Network (MSHANN) in process fault detection and diagnosis. The advantages of using MSHANN are the ability to detect faults during transient period, the efficiency of training the artificial neural networks and the effectiveness of classification of the multiple simultaneous faults. From computer simulation using a model of a continuous stirred tank reactor (CSTR) and a model of a binary distillation column which have long settling time, MSHANN successfully detects and diagnoses single faults and double faults during transient period. Furthermore, this thesis presents application of MSHANN not only in process fault detection and diagnosis, but also in fault identification (determination of the degree of fault) and fault accommodation (control reconfiguration) during transient period. The results from computer simulation using a binary distillation column show that MSHANN can detect, diagnose and identify every considered single fault during transient period, and some single faults accommodation can be achieved.

Share

COinS