Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Efficiency comparison on method to construct confidence intervals for parameters in high-dimensional logistic regression models between a bootstrap lasso + MLE and a bootstrap lasso + partial ridge

Year (A.D.)

2021

Document Type

Thesis

First Advisor

วิฐรา พึ่งพาพงศ์

Faculty/College

Faculty of Commerce and Accountancy (คณะพาณิชยศาสตร์และการบัญชี)

Department (if any)

Department of Statistics (ภาควิชาสถิติ)

Degree Name

วิทยาศาสตรมหาบัณฑิต

Degree Level

ปริญญาโท

Degree Discipline

สถิติ

DOI

10.58837/CHULA.THE.2021.1052

Abstract

งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี Lasso+MLE และวิธี Lasso+ Partial Ridge ซึ่งในการศึกษานี้จะจำลองข้อมูลทั้งหมด 8 ชุด และเปรียบเทียบประสิทธิภาพของช่วงความเชื่อมั่นที่ได้จากการสร้างช่วงความเชื่อมั่นทั้งหมด 4 วิธี ได้แก่ วิธี Parametric Bootstrap Lasso+MLE, วิธี Parametric Bootstrap Lasso+Partial Ridge, วิธี Paired Bootstrap Lasso+MLE และวิธี Paired Bootstrap Lasso+Partial Ridge โดยใช้เกณฑ์ในการเปรียบเทียบประสิทธิภาพของช่วงความเชื่อมั่น คือ ความกว้างเฉลี่ยของช่วงความเชื่อมั่น ค่าความน่าจะเป็นครอบคลุม ค่าความแม่นยำ และค่าความไว จากการศึกษาภายใต้ขอบเขตดังกล่าวผลปรากฏว่า วิธี Parametric Bootstrap Lasso+Partial Ridge มีประสิทธิภาพในการสร้างช่วงความเชื่อมั่นมากที่สุด รองลงมาคือ วิธี Paired Bootstrap Lasso+Partial Ridge และวิธี Paired Bootstrap Lasso+MLE ตามลำดับ และวิธีที่มีประสิทธิภาพในการสร้างช่วงความเชื่อมั่นน้อยที่สุด ก็คือ วิธี Parametric Bootstrap Lasso+MLE ดังนั้นจึงสรุปได้ว่า การสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกโดยใช้การประมาณสองขั้นตอนด้วยวิธี Lasso+Partial Ridge มีประสิทธิภาพมากกว่าวิธี Lasso+MLE

Other Abstract (Other language abstract of ETD)

This research is aimed to compare the efficiency of methods to construct confidence intervals for parameters in high-dimensional logistic regression models between a bootstrap Lasso + MLE and a bootstrap Lasso + Partial Ridge. In this study, there are 8 simulation data sets. Also, the confidence intervals are constructed by 4 methods: (i) Parametric Bootstrap Lasso+MLE (ii) Parametric Bootstrap Lasso+Partial Ridge (iii) Paired Bootstrap Lasso+MLE, and (iv) Paired Bootstrap Lasso+Partial Ridge. The performance of all 4 methods is compared in terms of average width value, coverage probability value, precision value, and recall value. From our simulation studies, they show that a Parametric Bootstrap Lasso+Partial Ridge is the best performance method to construct confidence intervals for parameters in high-dimensional logistic regression models, followed by a Paired Bootstrap Lasso+Partial Ridge method and a Paired Bootstrap Lasso+MLE method respectively, and the worse performance method is a Parametric Bootstrap Lasso+MLE method. So, we can conclude that a bootstrap Lasso + Partial Ridge method has the most effective more than that a bootstrap Lasso + MLE method.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.