Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
Efficiency comparison on method to construct confidence intervals for parameters in high-dimensional logistic regression models between a bootstrap lasso + MLE and a bootstrap lasso + partial ridge
Year (A.D.)
2021
Document Type
Thesis
First Advisor
วิฐรา พึ่งพาพงศ์
Faculty/College
Faculty of Commerce and Accountancy (คณะพาณิชยศาสตร์และการบัญชี)
Department (if any)
Department of Statistics (ภาควิชาสถิติ)
Degree Name
วิทยาศาสตรมหาบัณฑิต
Degree Level
ปริญญาโท
Degree Discipline
สถิติ
DOI
10.58837/CHULA.THE.2021.1052
Abstract
งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี Lasso+MLE และวิธี Lasso+ Partial Ridge ซึ่งในการศึกษานี้จะจำลองข้อมูลทั้งหมด 8 ชุด และเปรียบเทียบประสิทธิภาพของช่วงความเชื่อมั่นที่ได้จากการสร้างช่วงความเชื่อมั่นทั้งหมด 4 วิธี ได้แก่ วิธี Parametric Bootstrap Lasso+MLE, วิธี Parametric Bootstrap Lasso+Partial Ridge, วิธี Paired Bootstrap Lasso+MLE และวิธี Paired Bootstrap Lasso+Partial Ridge โดยใช้เกณฑ์ในการเปรียบเทียบประสิทธิภาพของช่วงความเชื่อมั่น คือ ความกว้างเฉลี่ยของช่วงความเชื่อมั่น ค่าความน่าจะเป็นครอบคลุม ค่าความแม่นยำ และค่าความไว จากการศึกษาภายใต้ขอบเขตดังกล่าวผลปรากฏว่า วิธี Parametric Bootstrap Lasso+Partial Ridge มีประสิทธิภาพในการสร้างช่วงความเชื่อมั่นมากที่สุด รองลงมาคือ วิธี Paired Bootstrap Lasso+Partial Ridge และวิธี Paired Bootstrap Lasso+MLE ตามลำดับ และวิธีที่มีประสิทธิภาพในการสร้างช่วงความเชื่อมั่นน้อยที่สุด ก็คือ วิธี Parametric Bootstrap Lasso+MLE ดังนั้นจึงสรุปได้ว่า การสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกโดยใช้การประมาณสองขั้นตอนด้วยวิธี Lasso+Partial Ridge มีประสิทธิภาพมากกว่าวิธี Lasso+MLE
Other Abstract (Other language abstract of ETD)
This research is aimed to compare the efficiency of methods to construct confidence intervals for parameters in high-dimensional logistic regression models between a bootstrap Lasso + MLE and a bootstrap Lasso + Partial Ridge. In this study, there are 8 simulation data sets. Also, the confidence intervals are constructed by 4 methods: (i) Parametric Bootstrap Lasso+MLE (ii) Parametric Bootstrap Lasso+Partial Ridge (iii) Paired Bootstrap Lasso+MLE, and (iv) Paired Bootstrap Lasso+Partial Ridge. The performance of all 4 methods is compared in terms of average width value, coverage probability value, precision value, and recall value. From our simulation studies, they show that a Parametric Bootstrap Lasso+Partial Ridge is the best performance method to construct confidence intervals for parameters in high-dimensional logistic regression models, followed by a Paired Bootstrap Lasso+Partial Ridge method and a Paired Bootstrap Lasso+MLE method respectively, and the worse performance method is a Parametric Bootstrap Lasso+MLE method. So, we can conclude that a bootstrap Lasso + Partial Ridge method has the most effective more than that a bootstrap Lasso + MLE method.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
ไทยวงษ์, ณิชากร, "การเปรียบเทียบประสิทธิภาพของวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี lasso + MLE and a bootstrap lasso + partial ridge" (2021). Chulalongkorn University Theses and Dissertations (Chula ETD). 5594.
https://digital.car.chula.ac.th/chulaetd/5594