Chulalongkorn University Theses and Dissertations (Chula ETD)
Congruence-free commutative semirings
Other Title (Parallel Title in Other Language of ETD)
เซมิริงสลับที่ได้ชนิดคอนกรูเอนซฟรี
Year (A.D.)
1985
Document Type
Thesis
First Advisor
Mitchell, Sidney S.
Faculty/College
Graduate School (บัณฑิตวิทยาลัย)
Degree Name
Master of Science
Degree Level
Master's Degree
Degree Discipline
Mathematics
DOI
10.58837/CHULA.THE.1985.736
Abstract
By a commutative semiring we mean a semiring in which both addition and multiplication are commutative. A semiring S is congruence-free iff the only congruences on S are S × S and the identity congruence. In this thesis we characterize congruence-free commutative semirings with a multiplicative identity, S as follows: Theorem: If S has a multiplicative zero which is also an additive identity then S is a field or a semifield of order 2. Theorem: If S has a multiplicative zero which is also an additive zero then S is a semifield. Theorem:There exist such semirings S which have no multiplicative zeros which are not division semirings. Theorem: If S has no multiplicative zero then either S is a band with respect to addition or S is additively cancellative. Theorem:If S has no multiplicative zero and S is additively cancellative then S has a natural partial order ≥ . If ≥ is total, then S is a division semiring.
Other Abstract (Other language abstract of ETD)
เซมิริงที่สลับที่ได้หมายถึงเซมิริงซึ่งทั้งการบวกและการคูณมีคุณสมบัติของการสลับที่ เราเรียก เซมิริง S ว่าเป็นคอนกรูเอนซ์ฟรี ถ้า S มีสองคอนกรูเอนซ์เท่านั้น คือ S×S และคอนกรูเอนซ์เอกลักษณ์ ในวิทยานิพนธ์ฉบับนี้ เราให้ลักษณะของเซมิริงสลับที่ได้ชนิดคอนกรูเอนซ์ฟรี ที่มีเอกลักษณ์สำหรับการคูณดังต่อไปนี้ ทฤษฎีบท ถ้า S มีศูนย์สำหรับการคูณ ซึ่งเป็นเอกลักษณ์ของการบวกด้วย s ต้องเป็นพิลด์หรือเซมิพิลด์ขนาด 2 ทฤษฎีบท ถ้า S มีศูนย์สำหรับการคูณ ซึ่งเป็นศูนย์สำหรับการบวกด้วย S ต้องเป็นเซมิพิลด์ ทฤษฎีบท มีเซมิริง S ดังกล่าว ซึ่งไม่มีศูนย์สำหรับการคูณซึ่งไม่เป็นดิวิชันเซมิริง ทฤษฎีบท ถ้า S ไม่มีศูนย์สำหรับการคูณ S ต้องเป็นแบนด์เมื่อเทียบกับการบวก หรือ S จะมีการตัดออกสำหรับการบวก ทฤษฎีบท ถ้า S ไม่มีศูนย์สำหรับการคูณ และถ้า S มีคุณสมบัติการตัดออกสำหรับการบวกแล้ว S จะมีอันดับบางส่วนแบบธรรมชาติ ≥ นอกจากนี้ ถ้า ≥ เป็นอันดับโดยสิ้นเชิงแล้ว S จะเป็นดิวิชันเซมิริง
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Paul B., Fenoglio,, "Congruence-free commutative semirings" (1985). Chulalongkorn University Theses and Dissertations (Chula ETD). 53845.
https://digital.car.chula.ac.th/chulaetd/53845
ISBN
9745642673