Chulalongkorn University Theses and Dissertations (Chula ETD)

Other Title (Parallel Title in Other Language of ETD)

Detecting fake news with machine learning method

Year (A.D.)


Document Type


First Advisor

ประภาส จงสถิตย์วัฒนา


Faculty of Engineering (คณะวิศวกรรมศาสตร์)

Department (if any)

Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)

Degree Name


Degree Level


Degree Discipline





วิทยานิพนธ์นี้นำเสนอวิธีการตรวจจับข่าวปลอมบนเครือข่ายสังคมออนไลน์ทวิตเตอร์ด้วยวิธีการเรียนรู้ด้วยเครื่อง โดยใช้การเรียนรู้ด้วยเครื่องสามวิธี ได้แก่ Na?ve Bayes, Neural Network และ Support Vector Machine โดยเก็บข้อมูลจากหัวข้อข่าวที่เป็นภาษาไทย ในระหว่างเดือนตุลาคมถึงพฤศจิกายน พ.ศ. 2560 ผลการวิจัยพบว่าทั้งสามวิธีสามารถตรวจจับข่าวปลอมในชุดข้อมูลได้อย่างถูกต้อง ร้อยละความถูกต้องของวิธี Na?ve Bayes คือ 96.08 เปอร์เซ็นต์ Neural Network 99.89 เปอร์เซ็นต์ และ Support Vector Machine 99.89 เปอร์เซ็นต์ นอกจากนี้ได้ทำการวิเคราะห์ข้อมูลข่าวปลอมและชี้ให้เห็นลักษณะของข่าวปลอมที่พบในชุดข้อมูล

Other Abstract (Other language abstract of ETD)

This dissertation proposes a machine learning method which can identify fake news from Twitter data. The experiment is carried out with three widely used machine learning methods: Na?ve Bayes, Neural Network and Support Vector Machine using Thai’s topic and collected from October to November 2017. The results show that all three methods can detect fake news in this data set accurately. The accuracy of Na?ve Bayes method is 96.08 percent, Neural Network 99.89 percent and Support Vector Machine 99.89 percent. Furthermore, we analyze the data of fake news and point out some of its characteristics.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.