Chulalongkorn University Theses and Dissertations (Chula ETD)
Other Title (Parallel Title in Other Language of ETD)
Detecting fake news with machine learning method
Year (A.D.)
2018
Document Type
Thesis
First Advisor
ประภาส จงสถิตย์วัฒนา
Faculty/College
Faculty of Engineering (คณะวิศวกรรมศาสตร์)
Department (if any)
Department of Computer Engineering (ภาควิชาวิศวกรรมคอมพิวเตอร์)
Degree Name
วิศวกรรมศาสตรดุษฎีบัณฑิต
Degree Level
ปริญญาเอก
Degree Discipline
วิศวกรรมคอมพิวเตอร์
DOI
10.58837/CHULA.THE.2018.1266
Abstract
วิทยานิพนธ์นี้นำเสนอวิธีการตรวจจับข่าวปลอมบนเครือข่ายสังคมออนไลน์ทวิตเตอร์ด้วยวิธีการเรียนรู้ด้วยเครื่อง โดยใช้การเรียนรู้ด้วยเครื่องสามวิธี ได้แก่ Naïve Bayes, Neural Network และ Support Vector Machine โดยเก็บข้อมูลจากหัวข้อข่าวที่เป็นภาษาไทย ในระหว่างเดือนตุลาคมถึงพฤศจิกายน พ.ศ. 2560 ผลการวิจัยพบว่าทั้งสามวิธีสามารถตรวจจับข่าวปลอมในชุดข้อมูลได้อย่างถูกต้อง ร้อยละความถูกต้องของวิธี Naïve Bayes คือ 96.08 เปอร์เซ็นต์ Neural Network 99.89 เปอร์เซ็นต์ และ Support Vector Machine 99.89 เปอร์เซ็นต์ นอกจากนี้ได้ทำการวิเคราะห์ข้อมูลข่าวปลอมและชี้ให้เห็นลักษณะของข่าวปลอมที่พบในชุดข้อมูล
Other Abstract (Other language abstract of ETD)
This dissertation proposes a machine learning method which can identify fake news from Twitter data. The experiment is carried out with three widely used machine learning methods: Naïve Bayes, Neural Network and Support Vector Machine using Thai’s topic and collected from October to November 2017. The results show that all three methods can detect fake news in this data set accurately. The accuracy of Naïve Bayes method is 96.08 percent, Neural Network 99.89 percent and Support Vector Machine 99.89 percent. Furthermore, we analyze the data of fake news and point out some of its characteristics.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
อภิวงศ์โสภณ, สุปัญญา, "การตรวจสอบข่าวปลอมด้วยวิธีการเรียนรู้ด้วยเครื่อง" (2018). Chulalongkorn University Theses and Dissertations (Chula ETD). 3397.
https://digital.car.chula.ac.th/chulaetd/3397