Journal of Metals, Materials and Minerals

Publication Date



Lignocellulosic biocomposite is a promising biodegradable materials, though improvement of the interfacial adhesion between cellulose fibre and polymer matrix is still challenged. Therefore, this work investigated the effect of propionylation of sisal reinforced fibre in the sisal/polyhydroxybutyrate-co-valerate (PHBV) biocomposite. Propionylation involved esterification substitution of propionic anhydride to hydroxyl group of sisal fibre, where ester group (COOR) of propionylated fibre was successfully observed by Fourier transform Infrared spectroscopy (FTIR). Then mechanical and thermal properties were evaluated and biodegradation characteristics were assessed. The tensile strength and modulus of propionylated sisal/PHBV biocomposite were greater than unmodified sisal/PHBV, which revealed better compatibility at the interface. In addition, propionate moieties of sisal fibre could induce crystalline formation of PHBV, as determined by an increase of crystalline phase. The higher decomposition temperature (Td) and activation energy (Ea) of 155 kJ·mol-1, determined by thermal gravimetric analyser (TGA), were strong confirmation of good thermal resistance of the propionylated sisal biocomposite. The storage modulus, as characterized by dynamic mechanical thermal analyser (DMTA), also revealed the improvement of stiffness. Bacterial growth tests evaluated the inhibition of bacterial growth on the PHBV biocomposites. It was clear that propionylation of sisal fibre decreased colonization of Staphylococcus aureus (SA) and Escherichia coli (E.coli).

First Page


Last Page




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.