•  
  •  
 

Journal of Metals, Materials and Minerals

Publication Date

2018-07-01

Abstract

ZnO and TiO2 have been widely accepted as prominent photocatalysts. Enhancement of their photocatalytic activities can be achieved through particle refinement and doping. Solution combustion technique is a simple and cost-effective method capable of producing fine ceramic powders with homogeneous chemical compositions. It is, therefore, employed in this research project as the technique to synthesize nanometer-sized Ti-doped ZnO powders. The research also aimed at examining a relationship among doping contents, chemical composition, particle sizes, and photocatalytic performance of the synthesized powder. Compositional analysis revealed that the solubility limit of Ti in zinc oxide was within the range of 3 at% Ti. Within the solubility limit, photocatalytic activity was enhanced with the titanium doping. Reduced photocatalytic performance, however, was observed in the powders with titanium contents beyond the solubility limit. The results also indicated that doping concentration did not have a significant effect on particle size and morphology. Equiaxial particles, with the average particle sizes ranging from 46.4 to 48.4 nm, were observed from the SEM micrographs.

First Page

104

Last Page

108

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.