•  
  •  
 

Journal of Metals, Materials and Minerals

Publication Date

2018-07-01

Abstract

Li and Cr co-doped NiO-based (LCNO) filler was successfully synthesized by the sol-gel process using metal nitrate compounds as starting materials and citric acid as a crosslinking agent, followed calcination at a temperature of 1000˚C for 3 h. Composites of Li and Cr co-doped NiO/epoxidized natural rubbers with 25 mol% epoxidation (abbreviated as LCNO/ENR-25) were prepared by mixing using a two-roll mill. The ENR-25 was blended with 0.5, 1, 2 and 3 phr (parts per hundred of rubber) of LCNO and the specimens were shaped at 160˚C using compression molding. The LCNO/ENR-25 composites were characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Additionally, a tensile tester was used to measure tensile strength, elongation at break and the modulus at 100% strain of the composites. The thermogravimetric analysis showed a slight increase in the decomposition temperature of the rubber composites with the addition of LCNO. The best dispersion of LCNO filled ENR-25 was observed with an LCNO loading of 3 phr. The incorporation of LCNO into ENR-25 resulted in an increase in the tensile strength and elongation at break, but decreased the modulus at 100% strain. The LCNO/ENR-25 composite with a content of 3 phr had the highest elongation at break (711%) and the highest tensile strength (18 MPa) compared to that of the ENR-25 vulcanizates (673% and 17 MPa, respectively), probably due to the better dispersion of LCNO in ENR-25.

First Page

87

Last Page

94

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.